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Abstract

Kernel methods provide an elegant and principled approach to nonparametric learning,
but so far could hardly be used in large scale problems, since naïve implementations
scale poorly with data size. Recent advances have shown the benefits of a number of
algorithmic ideas, for example combining optimization, numerical linear algebra and
random projections. Here, we push these efforts further to develop and test a solver that
takes full advantage of GPU hardware. Towards this end, we designed a preconditioned
gradient solver for kernel methods exploiting both GPU acceleration and parallelization
with multiple GPUs, implementing out-of-core variants of common linear algebra operations
to guarantee optimal hardware utilization. Further, we optimize the numerical precision
of different operations and maximize efficiency of matrix-vector multiplications. As a
result we can experimentally show dramatic speedups on datasets with billions of points,
while still guaranteeing state of the art performance. Additionally, we make our software
available as an easy to use library1.

1 Introduction

Kernel methods provide non-linear/non-parametric extensions of many classical linear models
in machine learning and statistics [44, 48]. The data are embedded via a non-linear map
into a high dimensional feature space, so that linear models in such a space effectively define
non-linear models in the original space. This approach is appealing, since it naturally extends
to models with infinitely many features, as long as the inner product in the feature space can

1https://github.com/FalkonML/falkon
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Figure 1: Benchmarks of kernel solvers on large scale datasets with millions and billions points
(see Section 4). Our approach (red and yellow lines) consistently achieves state of the art
accuracy in minutes.

be computed. In this case, the inner product is replaced by a positive definite kernel, and
infinite dimensional models are reduced to finite dimensional problems. The mathematics of
kernel methods has its foundation in the rich theory of reproducing kernel Hilbert spaces [46],
and the connection to linear models provides a gateway to deriving sharp statistical results
[52, 10, 53, 6, 4, 55]. Further, kernel methods are tightly connected to Gaussian processes [39],
and have recently being used to understand the properties of deep learning models [22, 28]. It
is not a surprise that kernel methods are among the most theoretically studied models. From
a numerical point of view, they reduce to convex optimization problems that can be solved
with strong guarantees. The corresponding algorithms provide excellent results on a variety
of data-sets, but most implementations are limited to problems of small/medium size, see
discussion in [51], Chapter 11. Most methods require handling a kernel matrix quadratic in
the sample size. Hence, dealing with datasets of size 104 to 105 is challenging, while larger
datasets are typically out of reach. A number of approaches have been considered to alleviate
these computational bottlenecks. Among others, random features [37, 38, 65, 25, 12, 11] and
the Nyström method are often used [60, 49], see also [14, 24, 17, 3, 66, 9]. While different,
both these approaches consider random projections to reduce the problem size and hence
computational costs. Renewed interest in approximate kernel methods was also spurred by
recent theoretical results proving that computational gains can possibly be achieved with no
loss of accuracy, see e.g. [26, 54, 40, 4, 41, 5].

In this paper, we investigate the practical consequences of this line of work, developing and
testing large scale kernel methods that can run efficiently on billions of points. Following [42]
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we use a Nyström approach to reduce the problem size and also to derive a preconditioned
gradient solver for kernel methods. Indeed, we focus on smooth loss functions where such
approaches are natural. Making these algorithmic ideas practical and capable of exploiting the
GPU, requires developing a number of computational solutions, borrowing ideas not only from
optimization and numerical analysis but also from scientific and high performance computing
[27, 2, 7]. Indeed, we design preconditioned conjugate gradient solvers that take full advantage
of both GPU acceleration and parallelization with multiple GPUs, implementing out-of-core
variants of common linear algebra operations to guarantee optimal hardware utilization. We
further optimize the numerical precision of different operations and investigate ways to perform
matrix-vector multiplications most efficiently. The corresponding implementation is then
tested extensively on a number of datasets ranging from millions to billions of points. For
comparison, we focused on other available large scale kernel implementations that do not
require data splitting, or multiple machines. In particular, we consider Eigenpro [29] which is
an approach similar to the one we propose, and GPyTorch [15] and GPflow [57] which come
from the Gaussian process literature. While these latter solutions allow also for uncertainty
quantification, we limit the comparison to prediction. We perform a systematic empirical
evaluation running an extensive series of tests. Empirical results show that indeed our approach
can process huge datasets in minutes and obtain state of the art performances, comparing
favorably to other solutions, both in terms of efficiency and accuracy. More broadly, these
results confirm and extend the observations made in [28, 29], that kernel methods can now
be seamlessly and effectively deployed on large scale problems. To make these new solutions
readily available, the corresponding code is distributed as an easy to use library developed on
top of PyTorch [35].
The rest of the paper is organized as follows. In Section 2, we provide some background
on the considered approaches. In Section 3, we detail the main algorithmic solutions in our
implementation, whereas the last section is devoted to assessing the practical advantages.

2 Background

Supervised learning is the problem of inferring an input-output function, given finitely many
input-output pairs. In statistical learning theory the data (xi, yi)

n
i=1 are assumed to be sampled

independently from a probability distribution ρ, and a loss function `(y, f(x)) is fixed measuring
the cost of predicting f(x) in place of y. The examples we consider are the squared (y− f(x))2

and the logistic loss log(1 + e−yf(x)). Then, a good function f should minimize the expected
loss

L(f) =

∫
`
(
f(x), y

)
dρ(x, y). (1)

A basic approach to solve the problem is empirical risk minimization, based on the idea of
replacing the above expectation with an empirical average. Further, the search of a solution
needs to be restricted to a suitable space of hypothesis, a simple example being linear functions
f(x) = w>x. Kernel methods extend this idea by considering a non linear feature map
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x 7→ Φ(x) ∈ F and functions of the form f(x) = w>Φ(x). Here Φ(x) ∈ F can be seen as a
feature representation in some space of features. The function space H thus defined is called
reproducing kernel Hilbert space [45]. If we denote by ‖f‖H its norm then regularized empirical
risk minimization is given by

f̂λ = arg min
f∈H

1

n

n∑
i=1

`
(
f(xi), yi

)
+ λ‖f‖2H, (2)

where the penalty term ‖f‖H is meant to prevent possible instabilities and λ ≥ 0 is a
hyperparameter. From a statistical point of view the properties of the estimator f̂λ are well
studied, see e.g. [52, 6, 47]. Under basic assumptions, for λ = O(1/

√
n), it holds with high

probability that
L(f̂λ)− inf

f∈H
L(f) = O

(
n−1/2

)
. (3)

This bound is sharp, but can be improved under further assumptions [6, 52]. Here, we use it
for reference. From a computational point of view, the key fact is that it is possible to compute
a solution also if Φ(x) is an infinite feature vector, as long as the kernel k(x, x′) = Φ(x)>Φ(x′)
can be computed [44]. The Gaussian kernel exp(−‖x− x′‖2/2σ2) is a basic example. Indeed,
by the representer theorem [23, 45], f̂λ(x) =

∑n
i=1 αik(x, xi), so Problem (2) can be replaced

with a finite dimensional problem on the coefficients. Its solution depends on the considered
loss, but typically involves handling the kernel matrix Knn ∈ Rn×n with entries k(xi, xj),
which becomes prohibitive as soon as n ∼ 105 (although multi-GPU approaches [58] have been
recently shown to scale to 106 points). In the following, we focus on Nyström approximation,
considering functions of the form

f(x) =

m∑
i=1

αik(x, x̃i), (4)

where {x̃1, . . . , x̃m} ⊂ {x1, . . . , xn} are inducing points sampled uniformly at random. As
we discuss next, this approach immediately yields computational gains. Moreover, recent
theoretical results show that the basic bound in (3) still holds taking as few as m = O(

√
n)

inducing points [41, 30]. With these observations in mind, we next illustrate how these
algorithmic ideas can be developed considering first the square loss and than the logistic loss.
Squared loss. This choice corresponds to kernel ridge regression (KRR). Since both the loss
and penalty are quadratic, solving KRR reduces to solving a linear system. In particular, letting
y = (y1, . . . , yn), we obtain (Knn + λnI)α = y, for the coefficients α = (α1, . . . , αn) ∈ Rn in
the solution of the problem in Eq. (2), while using the Nyström approximation (4) we get

(K>nmKnm + λnKmm)α = K>nmy, (5)

for α = (α1, . . . , αm) ∈ Rm. The first linear system can be solved directly in O
(
n3
)
time

and O
(
n2
)
space. In turn, Eq. (5) can be solved directly in O

(
nm2 +m3

)
time and O

(
m2
)

space (if the Knm matrix is computed in blocks). It is well known, that for large linear
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Algorithm 1 Pseudocode for the Falkon algorithm.
1: function Falkon(X ∈ Rn×d,y ∈ Rn, λ,m, t)
2: Xm ← RandomSubsample(X,m)
3: T,A← Preconditioner(Xm, λ)
4: function LinOp(β)
5: v ← A−1β
6: c← k(Xm, X)k(X,Xm)T−1v
7: return A−>T−>c+ λnv
8: end function
9: R← A−>T−>k(X,Xm)y

10: β ← ConjugateGradient(LinOp, R, t)
11: return T−1A−1β
12: end function

13: function Preconditioner(Xm ∈ Rm×d, λ)
14: Kmm ← k(Xm, Xm)
15: T ← chol(Kmm)
16: Kmm ← 1/mTT> + λI
17: A← chol(Kmm)
18: return T,A
19: end function

Note: LinOp performs the multiplication P̃>HP̃β
as in Eq. (8), via matrix-vector products.

systems iterative solvers are preferable [43]. Further, the convergence of the latter can be
greatly improved by considering preconditioning. The naïve preconditioner P for problem (5)
is such that PP> = (K>nmKnm +λnKmm)−1, and as costly to compute as the original problem.
Following [42] it can be approximated using once again the Nyström method to obtain

P̃ P̃> = ( nmK
2
mm + λnKmm)−1 (6)

since K2
mm ≈ K>nmKnm. Next, we follow again [42] and combine the above preconditioning with

conjugate gradient (CG). The pseudocode of the full procedure is given in Algorithm 1. Indeed,
as shown in [42] O(log n) CG steps are sufficient to achieve the bound in (3). Then with this
approach, the total computational cost to achieve optimal statistical bounds is O(n

√
n log n)

in time, and in O(n) in memory, making it ideal for large scale scenarios. The bulk of our
paper is devoted to developing solutions to efficiently implement and deploy Algorithm 1.
Logistic loss. The above ideas extend to the logistic loss and more generally to self-concordant
loss functions, including the softmax loss [31]. For reasons of space, we detail this case in
Appendix B and sketch here the main ideas. In this case, iterative solvers are the default option
since there is no closed form solution. Nyström method can be used a first time to reduce the
size of the problem, and then a second time to derive an approximate Newton step [30]. More
precisely, at every step preconditioned conjugate gradient descent is run for a limited number
of iterations with a decreasing value of λ, down to the desired regularization level. In practice,
this requires running Algorithm 1 multiple times with small number of iterations t and with
decreasing λ. Making these ideas practical requires efficiently implementing and deploying
Algoritm 1, making full use of the available computational architectures. This the core of our
contribution that we detail in the next section.

3 Reformulating kernel solvers for multi-core/multi-GPU archi-
tectures

GPU machines have a peculiar architecture with rather different properties than the standard
von Neumann computer, in particular they are characterized by highly parallel computational
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power, relatively small local accelerator memory and slow memory transfer to/from the
accelerator compared to their computational speed [63]. In their standard definition, kernel
methods require large amounts of memory with a low density of operations per byte of memory
used. This opens the question of how to adapt methods with low operation density to platforms
designed to be extremely efficient with very high density of operations per byte. With this in
mind, we started considering the state of the art kernel solver with minimal computational
requirements for optimal guarantees (described at a high level in Algorithm 1), with the goal
to reformulate its computational structure to dramatically increase the density of operations
per byte, and reduce as much as possible the required memory use / transfers. To achieve
this goal, we use a number of carefully designed computational solutions which systematically
reduce the impact of the inherent bottlenecks of multi-core/multi-GPU architectures, while
leveraging their intrinsic potential. In particular in the rest of this section we will focus on
(a) minimizing the memory footprint of the solver, which has long been the main bottleneck for
kernel methods, and is the main limitation encountered by current kernel solvers, (b) dealing
with limited memory on the GPU, (c) reaching the highest possible accelerator utilization,
parallelizing memory transfers and computation, (d) using the enhanced capabilities of GPUs
with reduced-precision floating point data.

3.1 Overcoming RAM memory bottleneck

Kernel solvers that use the Nyström method need the matrices Kmm and Knm. Since Knm

is used only in matrix-vector products, we can avoid constructing it explicitly (as we shall
see in the following paragraphs) which leaves us to deal with the Kmm matrix. When m is
large, it is crucial to carefully manage the memory needed for this task: in our implementation
we only ever allocate one m×m matrix, and overwrite it in different steps to calculate the
preconditioner. Indeed, choosing an appropriate form of the preconditioner, the matrix Kmm

itself is not needed in the conjugate gradient iteration. Figure 2 shows the total memory usage,
which consists of the preconditioner occupying approximately 90% of the memory (see last
paragraph of Sect. 3.1), the weight vector β and two buffers holding (part of) the m inducing
points and a data batch needed to compute Knm.
In-place computation and storage of the preconditioner. The preconditioner P̃ of
Eq. (6) is used to solve a linear system of the form P̃>HP̃β = P̃>Kmny with H = KmnKnm +

Figure 2: Structure of RAM alloca-
tion.

CPU→GPU
Compute
GPU→CPU

Time

Figure 3: Overlapping memory transfers and computa-
tion.
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λnKmm and β = P̃−1α. P̃ can be decomposed into two triangular matrices obtained via
Cholesky decomposition of Kmm,

P̃ = 1√
n
T−1A−1, T = chol(Kmm), A = chol( 1

mTT
> + λIm). (7)

All operations are performed in-place allocating a single m×m matrix as shown in Figure 4
and as described next: (a) a matrix of dimension m×m is allocated in memory; (b) the Kmm

kernel is computed in blocks on the GPU and copied to the matrix; (c) in-place Cholesky
decomposition of the upper triangle of Kmm is performed on the GPU (if the kernel does not
fit GPU memory an out-of-core algorithm is used, see later sections); (d) the product TT> is
computed in blocks via GPU and stored in the lower part; (e) out-of-core in-place Cholesky
decomposition is performed on the lower triangle to get A>. Additional care is needed to take
into account the matrix diagonal, not described here for brevity.
Elimination of the storage of Kmm. Considering more carefully the matrix P̃ (K>nmKnm +
λnKmm)P̃ with P̃ as in Eq. (7), we observe that the occurrences of Kmm cancel out. Indeed
(T−1)>KmmT

−1 = I since Kmm = T>T by Eq. 7. Then, the following characterization allows
to overwrite Kmm when calculating the preconditioner.

P̃>HP̃β = (A−1)>(T−1)>(K>nmKnm + λnKmm)T−1A−1β (8)

= (A−1)>[(T−1)>K>nmKnmT
−1 + λnI]A−1β. (9)

Blockwise Knm-vector product on GPU. The conjugate gradient algorithm will repeatedly
execute Eq. (9) for different β. The most expensive operations are the matrix-vector products
K>nm(Knmv) for an arbitrary vector v ∈ Rm×1 which – if computed explicitly – would require
n × m memory. However, it is possible to split the input data X ∈ Rn×d in B batches of
q rows each {Xb,: ∈ Rq×d}Bb=1, so that matrix-vector products can be accumulated between
batches using the formula

∑B
b=1 k(Xb,:, Xm)>(k(Xb,:, Xm)v). The matrix blocks to be held in

memory are summarized in Figure 2 for a total size of m× (m+ d+ 1) + q × d where q can be
small under memory pressure, or large for greater performance. It is important to note that
k(Xb,:, Xm) is never stored in main memory, as all operations on it are done on the GPU.
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Figure 5: Three phases of the block Cholesky decomposition for updating the first column.
Arrows indicate inter-GPU memory transfers between accelerators G-1 and G-2.

3.2 Fitting in GPU memory and dealing with multiple GPUs

While the main RAM might be a bottleneck, GPUs have an even smaller amount of memory,
and another level of splitting is needed to exploit their speed. For example, a typical architecture
has 256GB of RAM and 4 GPUs with 16GB ram each; a preconditioner with m = 2 × 105

occupies 150 GB and Knm with n = 107 would need 2000 GB of memory if stored. So we
need to deal with both efficient computation of Knm-vector product in chunks that fit a GPU,
and with the computation of the preconditioner that usually does not fit in GPU memory.
Operations based on a large storage layer (main RAM) and a small but fast layer (GPU)
are called out-of-core (OOC) operations. However, common machine learning libraries such
as Tensorflow [1] or PyTorch [35] do not implement OOC versions of the required matrix
operations, leaving potentially complex implementations to the users. Hence, in our library, we
provide these implementations in easily reusable form. It is important to note that splitting our
workload to fit in GPU also provides an easy path to parallelization in a multi-GPU system:
new chunks of computation are assigned to the first free GPU, effectively redistributing the
workload between multiple accelerators when available.
Optimized block decomposition for out-of-core Knm-vector multiplication. As seen
in the previous section, matrix-vector products can be split along the dimension n, resulting in
independent chunks of work that need to be summed up at the end. The OOC product between
a kernel matrix and a vector proceeds by: (a) transferring a block of data onto the device,
(b) computing the kernel on device and multiplying it by the vector, (c) copying the result
back to the host. This sequence of operations minimizes expensive data-transfers between
host and device since the kernel matrix is never moved. In particular, the computation is also
split along dimensions m and d, to maximize the ratio between computational complexity and
transfer time: i.e., maximizing qrs

qs+ds subject to qs+ ds ≤ G, where q, r and s are the batch
dimensions along n, m and d respectively, and G is the available GPU memory.
Out-of-core multi-GPU Cholesky decomposition. Other operations, such as Cholesky
decomposition and triangular matrix multiplication (lines 15, 16, 17 of Algorithm 1), can also
benefit from GPU execution. Here we describe, at a high level, our algorithm for multi-GPU
OOC Cholesky decomposition inspired by [27, 64]. We leave further details to Appendix C.
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Consider a symmetric matrix A, split into B × B tiles Aij ∈ Rt×t, i ∈ [B], j ∈ [B], assumed
of equal size for brevity. We want a factorization A = LL>, where L is lower triangular,
with the formula Ai,j =

∑j
k=1 Li,kL

>
j,k. The algorithm runs in-place, updating one column of

A at a time. Each column update proceeds in three steps, illustrated in Figure 5. Clearly
A1,1 = L1,1L

>
1,1 so we compute L1,1 by a Cholesky decomposition on tile A1,1 which is small

and can be done entirely on the GPU (e.g. with cuSOLVER [33]). Then we consider the other
tiles of the first block column of L for which Aj,1 = Lj,1L

>
1,1 with j > 1. Since we know L1,1

from the first step, we obtain Lj,1 = Aj,1L
−>
1,1 for all j > 1 by solving a triangular system (on

the GPU). Finally the first block column of L is used to update the trailing submatrix of A.
Note that Ai,j =

∑j
k=1 Li,kL

>
j,k = Li,1L

>
j,1 +

∑j
k=2 Li,kL

>
j,k for 2 ≤ j ≤ i, so we can update the

trailing submatrix as Ai,j = Ai,j − Li,1L>j,1. We implemented a parallel version of the above
algorithm which distributes block-rows between the available processors in a 1D block-cyclic
way (e.g. Figure 5 (left): rows 1 and 3 are assigned to GPU-1, rows 2 and 4 are assigned to
GPU-2). For each column update, one processor executes the first step and transfers the result
to the others (the arrows in Figure 5), which can then execute step 2 in parallel. To update the
trailing matrix, further data transfer between devices may be necessary. The tile-size is chosen
as a function of GPU memory: each device needs to hold one block column plus a single block
at any given time. An analysis of the scalability of our implementation is in Appendix C.

3.3 Optimizing data transfers and other improvements.

The speed of computations on GPUs is such that data transfers to and from the devices
become significant bottlenecks. We have described earlier how, for matrix-vector products,
the computed blocks of Knm never leave the device. Further, optimization is possible by
parallelizing computations and data transfers. Indeed, modern GPUs have an independent and
parallel control on the following activities: loading from RAM, saving to RAM, performing
computations. By running three parallel threads for the same GPU and assuming equal
duration of each piece of work, we can run t GPU computations in t+ 2 time units instead
of 3t time units for a serial implementation (see Figure 3, where t = 3). This guarantees
near optimal usage of the GPU and in practice corresponds to a considerable speed up of
matrix-vector products.
Leveraging the trade-off numerical precision / computational power. GPUs are
designed to achieve peak performance with low precision floating point numbers, so much
that going from 64 to 32-bit floats can correspond (depending on the exact architecture)
to ≈ 10× throughput improvement. However, changing precision can lead to unexpected
problems. For example, computing the Gaussian kernel is commonly done by expanding the
norm ‖x− x′‖2 = x>x− 2x>x′ + x′>x′, but in high dimensions ‖x‖, ‖x′‖ can be very large
and the cross-term very negative, so their sum has fewer significant digits. Loss of precision
can lead to non positive-definite kernels causing Cholesky decomposition to fail. To avoid this,
we compute Kmm in blocks, converting each block to 64-bit precision for the sum, and then
back to 32-bits.
Dealing with thin submatrices. As a result of our block division strategies, it may happen
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that blocks become thin (i.e. one dimension is small). In this case, matrix operations,
e.g. using cuBLAS [32], cannot leverage the full computational power. In turn this can reduce
performance, breaking the inherent computational symmetry among GPUs which is crucial for
the effectiveness of a parallel system like the one proposed in this paper. To guarantee good
performance for this case, instead of using standard GPU operations, we perform matrix-vector
products using KeOps [8]: a specialized library to compute kernel matrices very efficiently
when one dimension is small, see Table 1.
Dealing with sparse datasets. On the other side of the spectrum, sparse datasets with high
dimensionality are common in some areas of machine learning. While the kernel computed on
such datasets will be dense, and thus can be handled normally, it is inefficient and in some
cases impossible (e.g. with d ∼ 106 as is the case for the YELP dataset we used) to convert
the inputs to a dense representation. We therefore wrapped specialized sparse linear algebra
routines to perform sparse matrix multiplication [34], and adapted other operations such as the
row-wise norm to sparse matrices. Thus our library handles sparse matrices with no special
configuration, both on the GPU and – if a GPU is not available – on the CPU.

4 Large-scale experiments

We ran a series of tests to evaluate the relative importance of the computational solutions we
introduced, and then performed extensive comparisons on real-world datasets. The outcome of
the first tests is given in Table 1 and is discussed in Appendix A.1 for brevity. In summary,
it shows a 20× improvement over the base implementation of [42] which runs only partially
on the GPU. Such improvement is visible in equal parts for the preconditioner computations,
and for the iterative CG algorithm. For the second series of experiments we compared our
implementation against three other software packages for GPU-accelerated kernel methods on
several large scale datasets. All experiments were run on the same hardware, with comparable
amounts of hyperparameter tuning. Finally we compared the results of our library against
a comprehensive list of competing kernel methods found in the literature. We will denote
our implementation by Falkon for squared loss and by LogFalkon for logistic loss. Next we
present the algorithms we will compare with, then shortly describe the datasets used and the
experimental setting, and finally show the benchmark results. More details are in Appendix A.
Algorithms under test. We compare against the following software packages: EigenPro [29],
GPflow [57] and GPyTorch [15]. The first library implements a KRR solver based on precon-
ditioned block-coordinate gradient descent where the preconditioner is based on a truncated
eigendecomposition of a data subsample. EigenPro provides a fully in-core implementation and
therefore does not scale to the largest datasets we tried. On some datasets EigenPro required
the training data to be subsampled to avoid GPU memory issues. The other two packages
implement several GP approximations and exact solvers, and we had to choose the model which
would give a more appropriate comparison: we decided to avoid deep GPs [13, 62, 11] since they
share more similarities to deep nets than to kernel methods; on the other hand the exact GP –
even when implemented on GPU [15, 58] – as well as structured kernel interpolation [61, 16]
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Table 1: Relative performance improvement of the implemented optimizations w.r.t. [42].
The experiment was run with the HIGGS dataset, 1×105 centers and 10 conjugate gradient
iterations.

Experiment Preconditioner Iterations

Time Improvement Time Improvement

Falkon from [42] 2337 s − 4565 s −
Float32 precision 1306 s 1.8× 1496 s 3×
GPU preconditioner 179 s 7.3× 1344 s 1.1×
2 GPUs 118 s 1.5× 693 s 1.9×
KeOps 119 s 1× 232 s 3×

Overall improvement 19.7× 18.8×

approximations do not scale to the size of datasets we are interested in. The only GP models
which would scale up to tens of millions of points are stochastic variational GPs (SVGP). The
SVGP is trained in minibatches by maximizing the ELBO objective with respect to the varia-
tional parameters and the model hyperparameters. Stochastic training effectively constrains
GPU memory usage with the minibatch size. Hyperparameters include kernel parameters
(such as the length-scale of the RBF kernel) as well as the inducing points which – unlike in
Falkon – are modified throughout training using gradient descent. For this reason SVGP works
well even with very few inducing points, and all operations can run in-core. While GP solvers
are capable of estimating the full predictive covariance, we ensured that the software did not
compute it, and further we did not consider prediction times in our benchmarks. Furthermore
we always considered the Gaussian kernel with a single length-scale, due to the high effort of
tuning multiple length-scales for Falkon, although for GPs tuning would have been automatic.
Both GPyTorch and GPflow implement the same SVGP model, but we found the best settings
on the two libraries to be different; the discrepancies in running time and accuracy between
the two GP libraries come from implementation and tuning differences. We ran all algorithms
under as similar conditions as possible: same hardware, consistent software versions, equal
floating-point precision and equal kernels (we always considered the Gaussian kernel with a
single length-scale). Hyperparameters were optimized manually by training on a small data
subset, to provide a sensible trade off between performance and accuracy: we increased the
complexity of the different algorithms until they reached high GPU utilization since this is
often the knee in the time-accuracy curve. Details on the GP likelihoods, optimization details
and other settings used to run and tune the algorithms are in Appendix A.4.
Datasets. We used eight datasets which we believe represent a broad set of possible scenarios
for kernel learning in terms of data size, data type and task ranging from MSD with 5× 105

points up to TAXI with 109 points and YELP with 107 sparse features. The characteristics of
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the datasets are shown in table 2 while a full description, along with details about preprocessing
and relevant data splits, is available in appendix A.3.
Experimental setting. All experiments were run on a Dell PowerEdge server with 2 Intel
Xeon 4116 CPUs, 2 Titan Xp GPUs and 256GB of RAM. Since out of the analyzed implemen-
tations only Falkon could use both GPUs effectively, we ran it both in a 2-GPU configuration
(see Table 2) and in a single-GPU configuration (see in appendix Table 4) where Falkon was on
average 1.6× slower. Each experiment was run 5 times, varying the random train/test data
split and the inducing points. Out of all possible experiments, we failed to run GPyTorch on
TIMIT due to difficulties in setting up a multi-class benchmark (this is not a limitation of
the software). Other experiments, such as EigenPro on several larger datasets, failed due to
memory errors and others yet due to software limitations in handling sparse inputs (none of
the examined implementations could run the sparse YELP dataset). Finally, LogFalkon only
makes sense on binary classification datasets.
Results. We show the results in Table 2. In all cases, our library converges in less time
than the other implementations: with an average speedup ranging from 6× when compared
to EigenPro to > 10× when compared to GPyTorch. Only on very few datasets such as
AIRLINE-CLS, GPflow gets closer to Falkon’s running time. Both models had worse accuracy
than Falkon. EigenPro has generally high accuracy but can not handle large datasets at all.
Finally, LogFalkon provides a small but consistent accuracy boost on binary classification
problems, at the expense of higher running time. Compared with the original Falkon library [42]
we report slightly higher error on HIGGS; this is attributable to the use of low-precision floating
point numbers. We did not find significant performance differences for other datasets. We
defer comparisons with results from the literature to Appendix A.6; suffice it to note that a
distributed GP applied to the TAXI dataset resulted in a running-time of 6000 s using a system
with 28 000 CPUs [36] while we achieved similar accuracy in less time, with a much smaller
computational budget.

5 Conclusions

Making flexible and easy to use machine learning libraries available is one of the keys of the
recent success of machine learning. Here, we contribute to this effort by developing a library
for large scale kernel methods. We translate algorithmic ideas into practical solutions, using a
number of carefully design computational approaches specifically adapted to the GPU. The
resulting library achieves excellent performance both in terms of accuracy and computational
costs. A number of further developments are possible building on our work. For example,
considering other loss functions or optimization approaches, and especially more structured
kernels [9] that could further improve efficiency.
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Table 2: Accuracy and running-time comparisons on large scale datasets.

TAXI n ≈ 109 HIGGS n ≈ 107 YELP n ≈ 106, d ≈ 107

RMSE time 1−AUC time rel. RMSE time

Falkon 311.7±0.1 3628±2 s 0.1804±0.0003 443±2 s 0.810±0.001 1008±2 s
LogFalkon — 0.1787±0.0002 2267±5 s —
EigenPro FAIL FAIL FAIL
GPyTorch 315.0±0.2 37 009±42 s 0.1997±0.0004 2451±13 s FAIL
GPflow 313.2±0.1 30 536±63 s 0.1884±0.0003 1174±2 s FAIL

TIMIT n ≈ 106 AIRLINE n ≈ 106 MSD n ≈ 105

c-error time rel. MSE time rel. error time

Falkon 32.27±0.08 % 288±3 s 0.758±0.005 245±5 s (4.4834±0.0008)×10−3 62±1 s
EigenPro 31.91±0.01% 1737±8 s 0.785±0.005 1471±11 s1 (4.4778±0.0004)×10−3 378±8 s
GPyTorch — 0.793±0.005 2069±50 s (4.5004±0.0010)×10−3 502±2 s
GPflow 33.78±0.14 % 2672±10 s 0.782±0.005 1297±2 s (4.4986±0.0005)×10−3 525±5 s

AIRLINE-CLS n ≈ 106 SUSY n ≈ 106

c-error time c-error time

Falkon 31.5±0.2 % 186±1 s 19.67±0.02 % 22±0 s
LogFalkon 31.3±0.2% 1291±3 s 19.58±0.03% 83±1 s
EigenPro 32.5±0.2 % 1629±1 s1 20.08±0.55 % 90±0 s2

GPyTorch 32.5±0.2 % 1436±2 s 19.69±0.03 % 882±9 s
GPflow 32.3±0.2 % 1039±1 s 19.65±0.03 % 560±11 s

1Using a random subset of 1×106 points for training. 2Using a random subset of 6×105 points for training.
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A Further experiment details and results

A.1 Relative impact of performance optimizations

We performed an experiment to analyze how much improvement was due to the different
performance optimization steps. We ran Falkon on the HIGGS dataset several times with the
same hyperparameters (m = 1×105 and 10 epochs), but with different features enabled. Each
feature roughly corresponds to one of the performance optimizations discussed in Section 3.
Our baseline model is very similar to the original Falkon implementation [42], where the precon-
ditioner ran on the CPU, float64 precision was being used, but matrix-vector multiplications for
the CG algorithm were GPU accelerated. As a first optimization we used float32 precision for
all computations, with care taken to avoid errors in the Cholesky decomposition as discussed
in Section 3. This immediately resulted in a 2× speedup for the CPU part, and 3× for the
GPU part. Switching to a GPU preconditioner (using the algorithms described in Appendix C)
gave a huge boost to the preconditioner running time which went from more than 20 min to
just under 3 min. Adding a second GPU produced a perfect 2× speedup for the CG iterations,
and a more modest 1.5× speedup for the preconditioner which a) involves operations which are
not perfectly parallelizable and b) incurs in some fixed startup costs. Finally, since the HIGGS
dataset has only 9 features (thus the data matrix is thin), we can use KeOps [8] with great
benefits to the speed of matrix-vector multiplications. Overall our implementation provides
a nearly 20× improvement over the baseline, which makes learning on several huge datasets
doable in a matter of minutes.

A.2 Multi-GPU scalability

In this section we look into the scalability of our implementation across multiple GPUs.
Scalability results for the full Falkon algorithm on the TAXI dataset are shown in Figure 6.
This result depends on scaling both the preconditioner and the conjugate gradient iterations.
The preconditioner itself is computed with three main operations: two Cholesky decompositions
and one triangular matrix multiplication (this is called the LAUUM operation in LAPACK
terms), see Figure 4 for more details. Each CG iteration instead consists of two multiplications
between the kernel matrix and an arbitrary vector. First we look at the scalability of the
preconditioner operations with multiple GPUs. Then we examine our out-of-core matrix-vector
product implementation and compare it to KeOps for different settings of n and d.

Preconditioner scalability. Figure 7 shows the results from running both triangular matrix
multiplication and the Cholesky decomposition with one and two GPUs. At low matrix sizes
the speedup with two GPUs is negligible, especially for the Cholesky decomposition. In
such cases it is best to use a single GPU (especially since for n = 40000 the whole matrix
fits in GPU memory, so an in-place decomposition can be used). With higher matrix sizes,
having more than one GPU starts bringing real benefits, with a peak speedup around 1.8× for
preconditioners of size 140 000. The factors blocking such speedup from reaching a perfect 2×
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Figure 6: Multi-GPU scalability of Falkon on the TAXI dataset (settings are the same as per
Table 3). Falkon scales remarkably well, with even 4 GPUs.

are different for the two operations. Since the LAUUM operation was run out-of-place (see
Appendix C for more details), it does not need any synchronization – and should therefore be
able to scale well across multiple GPUs. The main blocking factor is the operation at Line 7 of
Algorithm 3 which is executed on the CPU (since an equivalent implementation does not exist
in cuSOLVER), thus both GPU threads must share the same CPU resources. We left porting
the LAUUM operation to the GPU as future work, but it has the potential to speed up the
LAUUM operation considerably. For the Cholesky decomposition the limiting factors are the
data-dependencies intrinsic to the algorithm which cannot be easily solved.

Comparing different MVM implementations. We compare our specialized routine for
the kernel-vector multiplication k(X(1), X(2))v implemented in Python, leveraging PyTorch for
GPU computations, against the native CUDA implementation from KeOps [8]. Using a similar
notation for the dimensions as in the main text we have X(1) ∈ Rn×d, X(2) ∈ Rm×d,v ∈ Rm×1
and k(·, ·) is a kernel function. Two distinct scenarios arise in different settings: increasing the
number of data points n produces linear scaling for both implementations, with KeOps being
approximately 10 times faster than our implementation (see Figure 8(a)). Increasing the data
dimensionality d our implementation scales linearly, but KeOps scales polynomially, so as it is
obvious from Figure 8(b) KeOps can not be used when the data is high-dimensional. A caveat
of this plot is that KeOps is continuously evolving, and is likely to improve performance with
large d in the future. In our final algorithm we set a threshold on the data dimensionality and
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(a) Parallel LAUUM.
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(b) Parallel Cholesky decomposition.

Figure 7: Running time of two preconditioner operations with one and two GPUs. The relative
speed-up with 2 GPUs is shown in the black dashed line. The LAUUM operation (triangular
matrix multiplication) was run out-of-place, which is theoretically easier to parallelize, while
the Cholesky decomposition was run in-place.

switch implementation based on this. Finally note that this operation scales almost perfectly
with multiple GPUs.

A.3 Additional information on the datasets

We used several datasets which we believe represent a broad set of scenarios for kernel learning,
in terms of data size, data type, and learning task. We normally used a standard random
split with 80% training, 20% testing data unless predefined splits existed (as noted below).
Preprocessing mostly consisted in basic data cleaning and data standardization to zero mean
and unit standard deviation; we comment in more detail below on specific preprocessing steps
applied to the individual datasets.

HIGGS has dimensions n = 1.1× 107, d = 28 and a binary target. It was preprocessed to 0
mean and unit variance. Results are reported on a 80-20 split with 1 minus the AUC metric
in Table 2 and with the binary classification error in Table 6. It is available for download at
https://archive.ics.uci.edu/ml/datasets/HIGGS.

TIMIT has dimensions n = 1.2 × 106, d = 440 and a multiclass target with 144 classes.
TIMIT comes from audio data, and our dataset uses the 10 ms resampling rate as in [28, 29].
It was preprocessed to 0 mean and unit standard deviation. The error metric is classification
error on a subset of classes (as used in [28]), and is calculated over a standardized subset of
57 242 samples. It is available for download at https://catalog.ldc.upenn.edu/LDC93S1.
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Figure 8: Scaling of matrix-vector implementations where the matrix is the Gaussian kernel.
In (a) we have set m = 20 000, d = 10 and n is variable; in (b) we set m = n = 20 000 and we
vary d. All experiments are run on 1 and 2 GPUs on single precision random data.

YELP has dimensions n = 1.5× 106, d = 6.52× 107 and a continuous target. This dataset
consists of text reviews, labeled with their star rating. We used the same data as [56] (Yelp
round 9 dataset), processed by extracting all 3-grams and encoding each review by a count
vector which tells us which 3-grams are present. Such encoding produces a large number of
sparse features which is reflected in the huge dimensionality of this dataset. Since the data is
sparse we did not normalize it. The error metric is RMSE, calculated on random 20% of the
samples. The dataset can be provided on request.

TAXI has dimensions n = 1.1× 109, d = 9 with a continuous target. Data are normalized
to have zero-mean and unit standard deviation; reported error is RMSE on a 20% random
sub-sample. The data can be downloaded by following instructions at https://github.com/
toddwschneider/nyc-taxi-data. Consistently with other users of this dataset [36] we took
the data from January 2009 to December 2015, excluding outliers (taxi trips more than 5 hours
long) and trips where the pickup or drop off location is outside of NYC.

AIRLINE has dimensions n = 5.93×106, d = 8 and a continuous target. Data are normalized
to zero-mean and unit standard deviation, and the error is the MSE over normalized targets
calculated on random test-sets of size 33 % of the full data (consistently with the literature [20,
18]). The same dataset is also used for binary classification by thresholding the target at
0, which results in the AIRLINE-CLS dataset. For this latter variation we used 100 000
random points for testing, reporting classification error in Table 2 and 1 minus the AUC
in Table 6 to facilitate comparisons with the literature. The data can be downloaded from
https://www.transtats.bts.gov/Fields.asp?Table_ID=236 and http://stat-computing.
org/dataexpo/2009/supplemental-data.html.
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MSD has dimensions n = 5.1×105, d = 90 with continuous target. Data are normalized
to zero-mean and unit standard deviation, and we report the relative error over a standard
test-set of size 51 630. The dataset can be downloaded from https://archive.ics.uci.edu/
ml/datasets/YearPredictionMSD.

SUSY has dimensions n = 5×106, d = 18 with binary target. Data are normalized to zero-
mean and unit standard deviation. We report the classification error on 20% of the data. Data
is available from the UCI repositories https://archive.ics.uci.edu/ml/datasets/SUSY.

A.4 Additional information on the experimental settings

1. EigenPro2. Its only hyperparameters – other than the kernel parameters – are the
ones governing the preconditioner’s complexity making EigenPro easy to tune. It is
however limited to datasets which fit entirely in GPU memory, so can not easily scale
to larger datasets; to alleviate this problem, consistently with the original paper, some
experiments were run on sub-sampled datasets. Furthermore, on some experiments we
found it necessary to manually tune the learning rate (we divided the automatically
inferred learning rate by a fixed integer, denoted by η÷ in Table 3).

2. GPFlow (v2.1.3). We used the SVGP model with Gaussian likelihood for regression,
Bernoulli for binary classification and Softmax for multi-class problems. We used Adam
for optimization and tuned the learning rate, the number of inducing points, and the
constraints on the variational distribution covariance (i.e. diagonal or full covariance
matrix). We found that using a full covariance matrix was rarely beneficial and increased
training times slightly, so all final experiments used a diagonal covariance matrix. The
number of parameters was m × d + m × 2 + 3 which includes the inducing points,
the variational parameters, two parameters for the Gaussian kernel (lengthscale and
variance) and the variance of the likelihood. For multi-class problems separate variational
parameters were trained for each class. Since we wished to use single-precision floating
point numbers in order to make GPU training more efficient, we found that natural
gradient optimization was unstable. It remains to be seen whether the tradeoff between
double-precision data and natural gradient optimization could further improve results.
We further tested the benefits of using whitening of the inducing points, and found that
it decreased per-epoch running times by about 2×, while at the same time slowing down
convergence by around the same amount. In practice this meant that the difference in
global running time was not strongly affected by whitening, and we ended up using it
only for the HIGGS data.

3. GPyTorch (v.1.2.0). We used the SVGP model with Gaussian and Bernoulli likelihoods.
We were unable to run GPyTorch’s SVGP model on the TIMIT dataset due to problems
in dealing with multiple outputs. We used the natural gradient optimizer to learn the
variational parameters, and Adam to learn the other hyperparameters. The learning

24

https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/SUSY


rate of the two optimizers was kept equal and tuned for best performance. We further
optimized the number of inducing points, and variational distribution constraints. In
practice we found that we had to use the natural gradient variational distribution for
regression problem, and the lower-triangular parametrization for classification problems
(which are non-conjugate). We additionally tested whether whitening the inducing points
was beneficial: in practice we found that using the unwhitened strategy was around 3×
faster and did not hamper convergence, so we selected it for all experiments. While
GPyTorch is theoretically able to run on multi-GPU systems, we noticed that this feature
was not available for the SVGP model thus we always used a single GPU; furthermore,
while a KeOps integration into GPyTorch is available, we found that for the SVGP model
it would increase the running time, so we did not use it. The trained parameters were
the same as for GPFlow plus another scalar for the GP mean.

4. Falkon. We tuned the kernel length-scale, number of inducing points and regularization
amount. We used a coarse to fine approach to tune the length-scale which gives good
results with a limited number of validation runs.

5. Logistic Falkon. Here we tuned the kernel length-scale, number of inducing points and
regularization path. We found that the algorithm is not very sensitive to the exact
regularization path: it is sufficient to set the final λ, and many different paths which lead
to such value will work in the same way.

A.5 Additional benchmarks

In Table 4 we show the performance of the Falkon algorithm on all considered datasets for 1
and 2 GPUs side by side. It is clear that larger datasets scale better with more GPUs since
the startup cost (mostly taken up by CUDA initialization) and the lower scaling ratio of the
preconditioner are amortized.

In Table 5 we compare the running times of Falkon and ThunderSVM [59] on three popular
image datasets. ThunderSVM was chosen among several SVM implementations as it runs
entirely on the GPU, and can thus solve the hinge-loss problem quickly for problems of moderate
size. Smaller datasets than the ones used for previous experiments were considered, since
ThunderSVM solves the full SVM problem and thus suffers from cubic time scaling. The results
obtained show that Falkon can work efficiently even on smaller datasets, resulting between 2
and 10 times faster than ThunderSVM (depending on problem size), with comparable accuracy.
To further shave off some time, we implemented a version of Falkon which runs entirely inside
the GPU: we call this InCoreFalkon, and it can only be used on smaller datasets which fit
inside the GPU, leaving some space to spare which is used for the preconditioner and the other
computations. Table 5 shows that InCoreFalkon gives a further speed-up of – on average – 2×
compared to the standard implementation.
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Table 3: Summary of the most important hyperparameter settings for all algorithm-dataset
combinations. We denote by η the learning rate, by subsample the amount of training-set
subsampling that was performed (i.e. training was done on a smaller dataset), and by Newton
steps the number of separate runs of the main Falkon algorithm for Logistic Falkon (see
Appendix B).

AIRLINE AIRLINE-CLS MSD SUSY TIMIT YELP HIGGS TAXI

n 5.93×106 5.93×106 5.1×105 5×106 1.2×106 1.6×106 11×107 1.15×109

d 8 8 90 18 440 6.5×107 28 9
labels reg 2-cls reg 2-cls 144-cls reg 2-cls reg

Falkon m 1×105 1×105 5×104 3×104 1×105 5×104 1.2×105 1×105

σ 0.9 0.9 7 3 14.5 20 3.8 1
λ 1×10−8 1×10−8 2×10−6 1×10−6 5×10−9 1×10−6 3×10−8 2×10−7

epochs 20 10 10 5 5 10 10 7
LogFalkon m – 1×105 – 2×104 – – 1×105 –

σ – 0.9 – 3 – – 5 –
λ – 1×10−9 – 1×10−8 – – 1×10−9 –
Newt. steps – 9 – 6 – – 9 –

GPyTorch m 2000 2000 3000 2000 – – 2000 1000
η 5×10−3 2×10−3 2×10−3 1×10−3 – – 2×10−2 2×10−3

epochs 20 20 20 20 – – 15 5
GPflow m 2000 2000 3000 2000 2000 – 2000 1000

η 5×10−3 5×10−3 2×10−3 3×10−3 1×10−2 – 2×10−2 3×10−3

epochs 25 20 45 10 15 – 60 10
whiten no no no no no – yes no

EigenPro η÷ 10 12 20 1 1 – – –
subsample 1×106 1×106 – 6×105 – – – –
epochs 9 10 9 1 4 – – –

Table 4: Benchmark timings using a single GPU. The relative slowdown with respect to Falkon
on 2 GPUs is also provided for comparison with Table 2.

1 GPU 2 GPUs Relative change

TAXI 7215±4 s 3628±2 s 1.99×
HIGGS 715±6 s 443±2 s 1.61×
YELP 1981±6 s 1008±2 s 1.97×
TIMIT 416±4 s 288±3 s 1.44×
AIRLINE 334±2 s 245±5 s 1.36×
MSD 81±0 s 62±1 s 1.31×
AIRLINE-CLS 391±5 s 269±3 s 1.45×
SUSY 29±1 s 22±0 s 1.32×
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Table 5: Comparing the running times of Falkon, the in-core version of Falkon and ThunderSVM
on three image datasets. Hyperparameters (especially the number of inducing points m) were
tuned so that the two algorithms obtained approximately the same accuracy.

MNIST
n = 6 · 104, d = 780

CIFAR10
n = 6 · 104, d = 1024

SVHN
n = 7 · 104, d = 1024

Falkon 10.9 s 13.7 s 17.2 s

InCoreFalkon 6.5 s 7.9 s 6.7 s

ThunderSVM 19.6 s 82.9 s 166.4 s

A.6 Performance comparisons in a literature review

We scanned the literature for results which used kernel methods on the datasets considered
in this paper, which reported both accuracy and running times. This allowed us to confirm
that the results reported in our benchmarks (see Table 2) were in-line with what had been
previously reported. The outcome is shown in Table 6. We do not report results where running
time is not mentioned. Some of the numbers in Table 6 have higher accuracy than Falkon:
this comes from the use of deep GPs which – through a vast number of parameters – can
learn better data representations. Such models are intrinsically different in spirit from kernel
methods, and we do not aim to compare with them specifically; they are reported in Table 6
for the sake of completeness.

B Logistic Falkon Algorithm

In this section we provide some more details on how to derive fast algorithms with strong
theoretical guarantees for smooth loss functions beyond squared loss. In particular, the main
ideas from a theoretical and algorithmic viewpoint that we are going to recall here are developed
in [31], [30]. Our goal, as stated in the main text, is to make these ideas practical, by efficiently
implementing and deploying the algorithms and making full use of the available computational
architectures. In particular, we will focus on the following set of generalized self concordant
loss functions:
Definition 1. Generalized self-concordant (GSC) function [31] Let H be a Hilbert space and
let z = (x, y) be an input-output pair. We say that `z : H → R is a generalized self-concordant
function on G ⊂ H, when G is a bounded subset of H and `z is a convex and three times
differentiable mapping on H such that

∀f ∈ H, ∀h, k ∈ H, ∇(3)`z(f)[h, k, k] ≤ supg∈G |g · h| ∇2`z(f)[k, k].

Denote by R the quantity supg∈G ‖g‖ < ∞. For many loss functions G is just the ball in
H centered in zero and with radius R > 0, then supg∈G |g · h| = R‖h‖). The following loss
functions, which are widely used in machine learning, are generalized self-concordant
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Table 6: Survey of results on the datasets we considered, as reported in the literature. We
report the result of our implementation (Falkon) next to other implementations, along with
the time taken and the hardware used (where available).

Dataset Falkon Other methods

error time error time reference

TAXI
(metric: RMSE)

311.7±0.1 3628±2 s 309.7 6000 s
28 000 vCPUs
(AWS)

ADVGP [36]

HIGGS
(metric: c-err)

25.78±0.03 % 443±2 s 32.87 % 1392 s
on 14 node cluster

liquidSVM [50]

YELP
(metric: RMSE)

0.810±0.001 1008±2 s 0.861 ≈ 3500 s Nyström [56]

0.854 ≈ 30 000 s
on 128 machines
(AWS)

Full linear kernel [56]

AIRLINE
(metric: MSE)

0.758±0.005 245±5 s 0.827±0.004 265±6 s
on a laptop

VFF-GP [20]

0.791±0.005 18 360±360 s
on a cluster

SVIGP [20]

MSD
(metric: rel. err.)

4.48×10−3 62±1 s ≈ 4.55×10−3 210 s
on IBM POWER8

Hierarchical [9]

4.58×10−3 289 s
on 8 r3.8xlarge
(AWS)

Faster KRR [3]

AIRLINE-CLS
(metric: AUC)

0.739±0.002 186±1 s 0.781±0.001 14 328 s Varitional Deep GP [62]

0.694 5200 s TT-GP [21]

0.788 1375 s Deep TT-GP [21]

0.665 80 000 s cVGP[19]

0.785 ≈ 5000 s RF Deep GPs [11]

SUSY
(metric: c-err)

19.67±0.02 % 22±0 s ≈ 20% ≈ 2000 s
on IBM POWER8

Hierarchical [9]

19.8% 58 s
on 1 Titan Xp

EigenPro 2.0 [29]
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Example 1. (Application to finite-sum minimization [31]) The following loss functions are
generalized self-concordant functions:
(a) Logistic regression: `z(f) = log(1 + exp(−yf(x))), where z = (x, y) with x ∈ X and
y ∈ {−1, 1}.
(b) Robust regression: `z(f) = ϕ(f(x) − y) with ϕ(u) = log(eu + e−u). Here z = (x, y) with
x ∈ X and y ∈ R
(c) Softmax regression: `z(f) = log(

∑k
j=1[f(x)]j)− [f(x)]y, where now f : X → Rk, z = (x, y),

with y ∈ {1, . . . , k} and vj denotes the j-th column of v ∈ Rk.
(d) generalized linear models with bounded features, which include conditional random fields (see
more details in [31]). Note, in particular, that the loss functions above are generalized self
concordant, but not self concordant as discussed in [31].

For the learning problem in Eq. (1) with generalized self-concordant loss functions, a strong
theoretical result analogous to the one for kernel ridge regression (3) has been obtained [31].
In particular, the regularized empirical risk minimization solution (2) with generalized self-
concordant losses achieves the bound

L(f̂λ)− inf
f∈H

L(f) = O
(
n−1/2

)
, (10)

under standard regularity conditions on the learning problem and achieves fast learning rates
similar to kernel ridge regression, considering more refined regularity conditions that are a
natural extension of the conditions for kernel ridge regression [31].

The paper [30] suggests to solve the regularized empirical risk minimization problem (2) for
generalized self-concordant losses, by using a set of techniques that are extensions of the Falkon
algorithm in [42]. In particular, the problem is cast in terms of an approximate Newton method,
with pseudocode shown in function GSC-Falkon of Algorithm 2. Nyström method is used a
first time to reduce the size of the problem, and then a second time to derive an approximate
Newton step [30]. Indeed a model of the form (4) is considered and the preconditioner now
plays the role of approximate Hessian, to perform the iterated approximation Newton. Given
(x̃j , ỹj)

m
j=1 selected uniformly at random from the dataset, the approximate Hessian H̃ at the

step k is a weighted version of the Falkon preconditioner and has the form

H̃ =
1

m
TD̃kT

> + µkI,

where T is such that T>T = Kmm (e.g. it is the Cholesky decomposition of Kmm) and
D̃k ∈ Rm×m is a diagonal matrix whose jth element is `(2)(fk(x̃j), ỹj) where we assume that
the loss function is `(f(x), y) and the second derivative is taken with respect to the first
variable. As for Falkon, the approximate Hessian is never built explicitly, we compute instead
its Cholesky decomposition in terms of the matrices T,A as H̃−1 = P̃ P̃> with P̃ = T−1A−1,
see the function WeightedPreconditioner in Alg. 2. Then conjugate gradient is applied to
the preconditioned problem, to solve the equation

P̃>(K>nmDkKnm + λI)P̃ β = P̃>K>nmgk.
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where Dk ∈ Rn×n is a diagonal matrix whose ith element is `(2)(fk(xi), yi) and gk ∈ Rn
corresponds to (gk)i = `(1)(fk(xi), yi). To conclude, as proven in [30], to achieve the same
learning rate of (10) and good practical performances, GSC-Falkon (Alg. 2) needs to call
WeightedFalkon only a small number of times with decreasing regularization parameters.
Moreover, each time WeightedFalkon needs to execute only few iterations of the CG algorithm.
The algorithm presented in Alg. 2 has an important theoretical appeal as proved in [30] since
it is the fastest to date to achieve optimal learning rates for generalized self-concordant loss
functions. The goal of our work is to make it also appealing from a practical viewpoint.
This requires efficiently implementing and deploying Alg. 2, making full use of the available
computational architectures. Clearly the main bottlenecks here are the same of Falkon for
squared loss and they are introduced and discussed in Section 3.

C Out-Of-Core Algorithms

In this section we describe more in detail the out-of-GPU core algorithms for 1) Cholesky
decomposition of a positive definite matrix and 2) multiplication of a triangular matrix by its
transpose. Both algorithms use a similar technique of dividing the input matrix in smaller
tiles such that operations can be performed in-core on the individual tiles. Then the main
challenges of such algorithms consist in choosing when to bring which tiles in-core, and how to
do so in parallel, handling data-dependencies between different tiles.

We handle parallelism between multiple GPUs using a static work-allocation scheme where
the input matrix is divided into block rows or columns (made up of several tiles), and each GPU
is assigned one or more such rows (or columns) block-cyclically, to ensure that the workload
is approximately balanced. Ensuring a balanced workload is tricky since the input matrices
are triangular, and for example a row at the top of a lower-triangular matrix will have many
more tiles than a row towards the bottom of said matrix. Smaller tile-sizes (so thinner block
rows/columns) make each processor’s workload more even, but – in case the input matrix is
not big enough – they reduce overall GPU utilization.

Triangular matrix multiplication. We begin by describing OOC triangular matrix multi-
plication, an operation which is known as LAUUM within the LAPACK library. Given an input
upper triangular matrix U ∈ Rn×n, we want to calculate the upper triangle of UU> and store it
in the upper part of U (thus making this an in-place operation). We divide U in N ×N tiles of
size t (uneven tile sizes are possible, and indeed necessary to support all input sizes, but omitted
from the description for clarity), and we index all matrices by their tiles: U2,2 is the square
tile at the second block-row and second block-column of U . The in-place LAUUM operation
can be compactly described as Ui,j =

∑N−1
k=j Ui,kU

>
j,k for j ≥ i: to update a tile of U we need

to multiply two block-rows of the original matrix. However, we can exploit the triangular
structure of some of the above matrix multiplications to improve performance: for example,
when i = j it is possible to split the update into two parts Ui,i = Ui,iU

>
i,i +

∑N
k=i Ui,kU

>
i,k

where the first part consists of an in-core LAUUM operation and the second of a symmetric
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matrix multiplication (BLAS routine SYRK) which can be up to twice as fast as the general
matrix multiplication routine. Similarly, for i < j, Ui,j = Ui,jU

>
j,j +

∑N
k=j+1 Ui,kU

>
j,k where the

first part can use the TRMM routine from the BLAS library and the second must use the
generic GEMM routine. To avoid overwriting parts of U which are still needed for the updates
– especially in a multi-GPU setting – the rows of U are to be updated one at a time, from top
to bottom. To ensure synchronization between multiple GPUs we use a thread barrier so that
all GPUs start updating a given row after having loaded its original, non-updated version in
GPU memory. GPU memory requirements for Algorithm 3 are two block-columns (i.e. 2Nt2

numbers). As discussed above, rows are assigned to GPUs in a 1D block-cyclic way. Such
allocations are recorded in the blockAllocs variable.

An adaptation of Algorithm 3 is possible when in-place operation is not needed: it is
sufficient to remove the synchronization barrier, and change line 18 to write the output to a
different matrix.

Cholesky decomposition. We want to decompose positive definite matrix A into lower
triangular matrix L such that L>L = A. But A does not fit entirely in GPU memory, and
potentially more than one GPU is available. As before it is convenient to subdivide A into
smaller tiles such that the tiles fit in GPU memory.

A1,1

A2,1 A2,2
...

. . .
An,1 . . . An,n

 =


L1,1

L2,1 L2,2
...

. . .
Ln,1 . . . Ln,n



LT1,1 LT2,1 . . . LTn,1

LT2,2 . . . LTn,2
. . .

...
LTn,n


Then the in-place decomposition may proceed column-wise across matrix A, where each
column update requires three steps. The first step is to use the in-core POTRF function from
cuSOLVER [33] on a single tile. Then, a triangular solution step is used to update the remaining
rows of the first column (taking the first column as an example Aj,1 = Lj,1L

>
1,1, 1 < j < N ,

so clearly Lj,1 = Aj,1(L
−1
1,1)
>). This can be done by using the TRSM operation from any GPU

BLAS implementation. Finally, the trailing submatrix must be updated with those terms
which can be computed from the current column, so that after this last step such column is not
needed anymore. This step consists of running Aij = Aij − Li,1L>j,1 where if c is the current
column i > c, c < j ≤ i (refer to Figure 5 for a more intuitive picture).

Running this algorithm in parallel requires dealing with several data dependencies in-
between tiles, and in general it will not be possible to achieve perfect parallelism due to the
inherently serial step of performing the Cholesky decomposition of the first tile in a column.
We avoid coarse synchronization mechanisms such as the thread barrier which was used for
the LAUUM OOC implementation, since we found they could introduce very high waiting
times (barriers would be needed after each of the three steps of the algorithm to ensure proper
synchronization). Our solution, which somewhat follows [27], uses an integer table T with
one entry per tile, which is shared between all GPU threads. The entries of T represent the
current state of each tile: basically how many times the tile has been updated. Since we use
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a static row-cyclic work allocation like for the triangular matrix multiplication, each thread
knows the expected state of a tile for each step (e.g. to perform the first step on tile Ac,c
the tile must have been updated exactly c times). So it can wait until such state has been
reached, then read the tile into GPU memory, perform the update, write back the tile to
main RAM, and increment the corresponding entry in T . Such a scheme is implemented in
Algorithm 4 with the help of the Load and Write sub-routines. Further optimizations are
possible by being careful about which tiles are swapped in and out of GPU memory and at
what times, overlapping computation with memory transfers when possible. Such optimizations
generally require to increase the total memory allocated on the GPU, thus decreasing the
maximum possible tile-size.
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Algorithm 2 Pseudocode for appr. Newton method with Falkon, for GSC losses (based
on [30]).

1: function GSC-Falkon(X ∈ Rn×d,y ∈ Rn, λ,m, t, T )
2: Set α0 = 0 ∈ Rm and µ0 > 0, q > 0 according to [30].
3: Xm,ym ← RandomSubsample(X,y,m)
4: for k ∈ N do
5: fk+1 ← WeightedFalkon(X,y, Xm,ymµk, t, αk)
6: µk+1 ← qµk
7: Stop when µk+1 < λ and set αlast ← αk.
8: end forreturn α̂← WeightedFalkon(X,y, Xm,ym, λ, T, αk)
9: end function

1: function WeightedFalkon(X ∈ Rn×d,y ∈ Rn, Xm ∈ Rm×d,ym ∈ Rm, λ, t, α0 ∈ Rm)
2: T,A← WeightedPreconditioner(Xm,ym, α0, λ)
3: function LinOp(β ∈ Rm)
4: v ← A−1β
5: z ← k(X,Xm)β . predictions on the dataset
6: D ← diag[(`(2)((z)1, (y)1), . . . , `

(2)((z)n, (y)n))]
7: c← k(Xm, X)Dk(X,Xm)T−1v
8: return A−>T−>c+ λnv
9: end function

10: R← A−>T−>k(X,Xm)y
11: β ← ConjugateGradient(LinOp, R, t, α0) . CG solver starting from α0

12: return T−1A−1β
13: end function

1: function WeightedPreconditioner(Xm ∈ Rm×d,ym ∈ Rm, α ∈ Rm, λ)
2: Kmm ← k(Xm, Xm) . Compute the kernel between inducing points
3: z ← Kmmα . predictions on the Nyström points
4: T ← chol(Kmm)
5: D ← diag[(`(2)((z)1, (ym)1), . . . , `

(2)((z)m, (ym)m))]
6: Kmm ← 1/mTDT> + λI
7: A← chol(Kmm)
8: return T,A
9: end function

Note: LinOp performs the multiplications via matrix-vector products.
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Algorithm 3 Out-of-core LAUUM operation on an upper-triangular matrix. The algorithm’s
inputs are matrix U , a synchronization object barrier, an array of arrays describing which
row indices are assigned to which processor blockAllocs, and the number of tiles per side N .
The function described below should be called for every available GPU with a different procId
value.

1: function OocLauum(U ∈ Rn×n, barrier, blockAllocs, procId, N)
2: for i = 1, . . . , N do
3: C ∈ Rt×t·(N−i) ← ToGPU(procId,

[
Ui,i, . . . , Ui,N

]
)

4: barrier.wait()
5: for j ∈ blockAllocs[procId] do
6: if i = j then
7: C1 ← C1C

>
1 . via LAUUM

8: if i 6= N then
9: C1 ← C1 + C1:(N−i+1)C

>
1:(N−i+1) . via SYRK

10: end if
11: else if j > i then
12: D ∈ Rt×t·(N−j) ← ToGPU(procId,

[
Uj,j , . . . , Uj,N

]
)

13: C(j−i) ← C(j−i)D
>
1 . via TRMM

14: if j 6= N then
15: C(j−i) ← C(j−i+1):(N−i+1)D

>
2:(N−j+1) . via GEMM

16: end if
17: end if
18: Ui,j ← FromGPU(procId, C(j−i))
19: end for
20: end forreturn U
21: end function
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Algorithm 4 Out-of-core, in-place Cholesky decomposition of symmetric positive definite
matrix A. The lower triangle of A will be overwritten by L such that L>L = A. The function
OocPotrf should be called for each available GPU with different values of the procId variable
to parallelize the decomposition across GPUs. The inputs are the same as for Algorithm 3 but
for work-table T ∈ ZN×N whose values are atomically updated by the different GPU processes
to ensure synchronization.
1: functionOocPotrf(A, blockAllocs, procId, T , N)
2: for i = 1, . . . , N do
3: if i ∈ blockAllocs[procId] then
4: B ← Load(A, T , i, j, i)
5: B ← POTRF(B)
6: Ai,i ← Write(B, T , i, i)
7: end if
8: for j ∈ blockAllocs[procId] do
9: if j ≤ i then

10: continue

11: end if
12: B ← Load(A, T , i, i, i+ 1)
13: C ← Load(A, T , j, i, i)
14: C ← C(B−1)> . via TRSM
15: Aj,i ← Write(C, T , j, i)
16: end for
17: for j ∈ blockAllocs[procId] do
18: if j ≤ i+ 1 then
19: continue

20: end if
21: C ← Load(A, T , j, i, i+ 1)
22: for y = i, . . . j do
23: E ← Load(A, T , j, y, i)
24: if y = j then
25: E ← E − CC> . via SYRK
26: else
27: D ← Load(A, T , y, i, i+ 1)
28: E ← E −DC> . via GEMM
29: end if
30: Aj,y ← Write(E, T , j, y)
31: end for
32: end for
33: end for
34: end function

35: function Load(A, T, i, j, exp)
36: while Ti,j < exp do
37: wait
38: end while
39: return ToGPU(Ai,j)
40: end function

41: function Write(G,T, i, j)
42: Ti,j ← Ti,j + 1
43: return FromGPU(G)
44: end function
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Abstract

Kernel methods provide a principled approach to nonparametric learning. While
their basic implementations scale poorly to large problems, recent advances showed that
approximate solvers can efficiently handle massive datasets. A shortcoming of these solu-
tions is that hyperparameter tuning is not taken care of, and left for the user to perform.
Hyperparameters are crucial in practice and the lack of automated tuning greatly hin-
ders efficiency and usability. In this paper, we work to fill in this gap focusing on kernel
ridge regression based on the Nyström approximation. After reviewing and contrasting a
number of hyperparameter tuning strategies, we propose a complexity regularization cri-
terion based on a data dependent penalty, and discuss its efficient optimization. Then,
we proceed to a careful and extensive empirical evaluation highlighting strengths and
weaknesses of the different tuning strategies. Our analysis shows the benefit of the pro-
posed approach, that we hence incorporate in a library for large scale kernel methods to
derive adaptively tuned solutions.

1 Introduction

Learning from finite data requires fitting models of varying complexity to training data. The
problem of finding the model with the right complexity is referred to as model selection in
statistics and more broadly as hyperparameter tuning in machine learning. The problem is
classical and known to be of utmost importance for machine learning algorithms to perform
well in practice. The literature in statistics is extensive (Hastie et al., 2009), including a
number of theoretical results (Arlot, 2007; Massart, 2007; Tsybakov, 2003). Hyperparameter
(HP) tuning is also at the core of recent trends such as neural architecture search (Elsken
et al., 2019) or AutoML (Hutter et al., 2018). In this paper, we consider the question
of hyperparameter tuning in the context of kernel methods and specifically kernel ridge
regression (KRR) (Smola and Schölkopf, 2000). Recent advances showed that kernel methods
can be scaled to massive data-sets using approximate solvers (Chen et al., 2017; Ma and
Belkin, 2019; Meanti et al., 2020). The latter take advantage of a number of ideas from
optimization (Boyd and Vandenberghe, 2004) and randomized algorithms (El Alaoui and
Mahoney, 2015), and exploit parallel computations with GPUs. While these solutions open
up new possibilities for applying kernel methods, hyperparameter tuning is notably missing,
ultimately hindering their practical use and efficiency. Indeed, available solutions which
provide hyperparameter tuning are either limited to small data, or are restricted to very
few hyperparameters (Pedregosa et al., 2011; Steinwart and Thomann, 2017; Suykens et al.,
2002).
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In this paper we work to fill in this gap. We consider approximate solvers based on the
Nyström approximation and work towards an automated tuning of the regularization and
kernel parameters, as well as the Nyström centers. On the one hand, we provide a careful
review and extensive empirical comparison for a number of hyperparameter tuning strate-
gies, while discussing their basic theoretical guarantees. On the other hand we propose,
and provide an efficient implementation for, a novel criterion inspired by complexity regu-
larization (Bartlett et al., 2002) and based on a data-dependent bound. This bound treats
separately the sources of variance due to the stochastic nature of the data. In practice, this
results in better stability properties of the corresponding tuning strategy. As a byproduct
of our analysis we complement an existing library for large-scale kernel methods with the
possibility to adaptively tune a large number of hyperparameters. Code is available at the
following address: https://github.com/falkonml/falkon.

In Section 2 we introduce the basic ideas behind empirical risk minimization and KRR,
as well as hyperparameter tuning. In Section 3 we propose our new criterion, and discuss
its efficient implementation in Section 4. In Section 5 we conduct a thorough experimental
study and finally, in Section 6 we provide some concluding remarks.

2 Background

We introduce the problem of learning a model’s parameters, which leads to learning of the
hyperparameters and then discuss various objective functions and optimization algorithms
which have been proposed for the task.

2.1 Parameter and Hyperparameter Learning

Assume we are given a set of measurements {(xi, yi)}ni=1 ⊂ X × Y related to each other by
an unknown function f∗ : X → Y and corrupted by some random noise εi with variance σ2.

yi = f∗(xi) + εi. (1)

We wish to approximate the target function f∗ using a model f : X → Y defined by a set of
parameters which must be learned from the limited measurements at our disposal. In order
for the learning procedure to succeed, one often assumes that f belongs to some hypothesis
space F , and this space typically depends on additional hyperparameters θ. Assume we are
given a loss function ` : Y × Y → R; we can learn a model by fixing the hyperparameters θ
and minimizing the loss over the available training samples:

f̂θ = arg min
f∈Fθ

n∑
i=1

`(f(xi), yi)

In this paper we are concerned with kernel ridge regression: a specific kind of model where the
loss function is the squared loss `(y, y′) = ‖y−y′‖2 and the hypothesis space is a reproducing
kernel Hilbert space (RKHS) H. Associated to H is a kernel function kγ : X ×X → R which
depends on hyperparameters γ. To ensure that the minimization problem is well defined we
must add a regularization term controlled by another hyperparameter λ:

f̂λ,γ = arg min
f∈H

n∑
i=1

‖f(xi)− yi‖2 + λ‖f‖2H.

The solution to this minimization problem is unique (Caponnetto and De Vito, 2007), but is
very expensive to compute requiring O(n3) operations and O(n2) space. An approximation
to KRR considers a lower-dimensional subspace Hm ⊂ H as hypothesis space, where Hm
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is defined from m � n points Z = {zj}mj=1 ⊂ X (Williams and M. Seeger, 2001). While
the inducing points Z (also known as Nyström centers) are often picked from the training
set with different sampling schemes (Kumar et al., 2012), they can also be considered as
hyperparameters. In fact this is common in sparse Gaussian Processes (GPs) and leads
to models with a much smaller number of inducing points (Hensman, Fusi, et al., 2013;
Hensman, Matthews, et al., 2015; Titsias, 2009). Minimizing the regularized error gives the
unique solution

f̂λ,Z,γ =
m∑
j=1

βjkγ(·, zj), with β = (K>nmKnm + λnKmm)−1K>nmY (2)

with (Knm)i,j = kγ(xi, zj) and (Kmm)i,j = kγ(zi, zj). The Nyström KRR model (N-KRR)
reduces the computational cost of finding the coefficients to O(n

√
n log n) when using efficient

solvers (Ma and Belkin, 2019; Meanti et al., 2020; Rudi et al., 2017).
The ideal goal of hyperparameter optimization is to find a set of hyperparameters θ∗ for

which f̂θ∗ minimizes the test error (over all unseen samples). By definition we cannot actually
evaluate the test error: we must use the available data points. Näıvely one could think of
minimizing the training error instead, but such a scheme inevitably chooses overly complex
models which overfit the training set. Instead it is necessary to minimize a data-dependent
criterion L

θ̂ = arg min
θ
L(f̂θ)

such that complex models are penalized. In practice a common strategy for choosing L is
for its expectation (with respect to the sampling of the data) to be equal to, or an upper
bound of the test error. In the next section we will look at instances of L which appear in
the literature and can be readily applied to N-KRR.

2.2 Objective Functions

Validation error A common procedure for HP tuning is to split the available n training
samples into two parts: a training set and a validation set. The first is used to learn a model
f̂θ with fixed hyperparameters θ, while the validation set is used to estimate the performance
of different HP configurations.

LVal(f̂θ) =
1

nval

nval∑
i=1

‖f̂θ(xvali )− yvali ‖2 (3)

By using independent datasets for model training and HP selection, LVal will be an unbiased
estimator of the test error and it can be proven that its minimizer is close to θ∗ under
certain assumptions (Arlot and Celisse, 2010). However, since f̂θ has been trained with
ntr < n samples, there is a small bias in the chosen hyperparameters (Varma and Simon,
2006). Furthermore the variance of the hold-out estimator is typically very high as it depends
on a specific data split. Two popular alternatives which address this latter point are k-fold
cross-validation (CV) which averages over k hold-out estimates and leave-one-out CV.

Leave-one-out CV and Generalized CV The LOOCV estimator is an average of the
n estimators trained on all n − 1 sized subsets of the training set and evaluated on the
left out sample. The result is an almost unbiased estimate of the expected risk on the full
dataset (Vapnik, 1998). For linear models a computational shortcut allows to compute the
LOOCV estimator by training a single model on the whole dataset instead of n different
ones (Cawley and Talbot, 2004). In particular in the case of N-KRR we can consider

LLOOCV(f̂θ) =
1

n

n∑
i=1

(
yi − f̂θ(xi)

1−Hii

)2

, (4)
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where the so-called hat matrix H is H = Knm(K>nmKnm + λnKmm)−1Knm.
GCV is an approach proposed in Golub et al. (1979) to further improve LOOCV’s com-

putational efficiency and to make it invariant to data rotations:

LGCV(f̂θ) =
1

n

n∑
i=1

(
yi − f̂θ(xi)
1
nTr(I −H)

)2

. (5)

For GCV Cao and Golubev (2006) proved an oracle inequality which guarantees convergence
to the neighborhood of θ∗ when estimating λ for KRR.

Complexity regularization Complexity regularization, or covariance penalties (Efron,
2004; Mallows, 1973) are a general framework for expressing objective functions as the em-
pirical error plus a penalty term to avoid overly complex models. For linear models the trace
of the hat matrix acts as penalty against complexity. Applying these principles to N-KRR
gives the objective

LC−Reg(f̂λ,Z,γ) =
1

n
‖f̂λ,Z,γ(X)− Y ‖2 +

2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

(6)

where K̃ = KnmK
†
mmK>nm (the Nyström kernel), and A† denotes the Moore-Penrose inverse

of matrix A. The first term can be interpreted as a proxy to the bias of the error, and the
second as a variance estimate. For estimating λ in (N-)KRR, Arlot and Bach (2009) proved
an oracle inequality if a precise estimate of the noise σ2 is available.

Sparse GP Regression (Titsias, 2009) A different approach comes from a Bayesian
perspective, where the equivalent of KRR is Gaussian Process Regression (GPR). Instead of
estimating the test error, HP configurations are scored based on the “probability of a model
given the data” (Rasmussen and Williams, 2006). A fully Bayesian treatment of the hyper-
parameters allows to write down their posterior distribution, from which the HP likelihood
has the same form of the marginal likelihood in the model parameter’s posterior. Hence
maximizing the (log) marginal likelihood (MLL) with gradient-based methods is common
practice in GPR.

Like with N-KRR, inducing points are used in GPR to reduce the computational cost,
giving rise to models such as SoR, DTC, FiTC (Quiñonero-Candela and Rasmussen, 2005).
Here we consider the SGPR model proposed in Titsias (2009) which treats the inducing points
as variational parameters, and optimizes them along with the other HPs by maximizing a
lower bound to the MLL. The objective to be minimized is

LSGPR(f̂λ,Z,γ) = log
∣∣∣K̃ + nλI

∣∣∣+ Y >(K̃ + nλI)−1Y +
1

nλ
Tr
(
K − K̃

)
. (7)

The first term of Eq. (7) penalizes complex models, the second pushes towards fitting the
training set well and the last term measures how well the inducing points approximate
the full training set. Recently the approximate MLL was shown to converge to its exact
counterpart (Burt et al., 2020), but we note that this does not guarantee convergence to the
optimal hyperparameters.

2.3 Optimization Algorithms

In this section we describe three general approaches for the optimization of the objectives
introduced above.
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Grid search In settings with few hyperparameters the most widely used optimization
algorithm is grid-search which tries all possible combinations from a predefined set, choosing
the one with the lowest objective value at the end. Random search (Bergstra and Bengio,
2012) and adaptive grid search (used for SVMs in Steinwart and Thomann (2017)) improve
on this basic idea, but they also become prohibitively costly with more than ∼ 5 HPs as the
number of combinations to be tested grows exponentially.

Black-box optimization A more sophisticated way to approach the problem is to take
advantage of any smoothness in the objective. Sequential model-based optimization (SMBO)
algorithms (Brochu et al., 2010; Shahriari et al., 2016; Snoek et al., 2012) take evaluations
of the objective function as input, and fit a Bayesian surrogate model to such values. The
surrogate can then be cheaply evaluated on the whole HP space to suggest the most promising
HP values to explore. These algorithms do not rely on gradient information so they don’t
require the objective to be differentiable and can be applied for optimization of discrete HPs.
However, while more scalable than grid search, black-box algorithms become very inefficient
in high (i.e. > 100) dimensions.

Gradient-based methods Scaling up to even larger hyperparameter spaces requires ex-
ploiting the objective’s local curvature. While the optimization problem is typically non-
convex, gradient descent will usually reach a good local minimum. When the objective can
be decomposed as a sum over the data-points SGD can be used, which may provide com-
putational benefits (e.g. the SVGP objective (Hensman, Fusi, et al., 2013) is optimized in
mini-batches with SGD). In the context of KRR, gradient-based methods have been suc-
cessfully used for HP optimization with different objective functions (Keerthi et al., 2007;
M. W. Seeger, 2008). Recent extensions to gradient-based methods have been proposed for
those cases when the trained model cannot be written in closed form. Either by unrolling
the iterative optimization algorithm (Franceschi et al., 2017; Grazzi et al., 2020; Maclaurin
et al., 2015), or by taking the model at convergence with the help of the implicit function
theorem (Pedregosa, 2016; Rajeswaran et al., 2019), it is then possible to differentiate a
simple objective (typically a hold-out error) through the implicitly defined trained model.
This has proven to be especially useful for deep neural nets (Lorraine et al., 2020), but is
unnecessary for N-KRR where the trained model can be easily written in closed form.

3 Hyper-parameter Optimization for Nyström KRR

The objectives introduced in the previous section can be applied to HP tuning for kernel
methods. Always keeping in mind efficiency but also usability, our goal is to come up
with an objective and associated optimization algorithm which: 1) can be used to tune the
hyperparameters of Nyström kernel ridge regression including the inducing points and 2) can
be computed efficiently, even for large scale problems.

To satisfy the first point, an algorithm of the first-order is needed since the inducing
points are typically between a hundred and a few thousands (each point being of the same
dimension as the data). Regarding the second point we found empirically that the unbiased
objectives are prone to overfitting on certain datasets. An example of this behavior is shown
in Figure 1 on a small subset of the HIGGS dataset. The first three objectives (Hold-out,
GCV and C-Reg) are unbiased estimates of the test error, hence it is their variance which
causes overfitting. To mitigate such possibility in our objective we may look into the different
sources of variance: hold-out depends strongly on which part of the training set is picked for
validation, GCV and C-Reg don’t rely on data splitting but still suffer from the variance
due to the random initial choice of inducing points.
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Figure 1: Test-error and penalty (λ) as a function of optimization epoch on the small-
HIGGS dataset. m = 100 centers, d lengthscales and λ were optimized with equal initial
conditions. The three unbiased proxy functions lead to overfitting, while SGPR and the
proposed objective do not.

We set out to devise a new objective in the spirit of complexity regularization, which is
an upper bound on the test error. A biased estimate – which is therefore overpenalizing –
will be more resistant to noise than an unbiased one (as was noted in Arlot (2007)), and
we tailor our objective specifically to N-KRR in order to explicitly take into account the
variance from inducing point selection.

We base our analysis of the N-KRR error in the fixed design setting, where the points
xi ∈ X , i = (1, . . . , n) are assumed to be fixed, and the stochasticity comes from i.i.d.
random variables εi, . . . , εn such that E[εi] = 0 and E

[
ε>i εi

]
= σ2. Denote the empirical

error of an estimator f ∈ H as L̂(f) = n−1‖f(X) − Y ‖2 and the test error as L(f) =
n−1‖f(X) − f∗(X)‖2 (recall f∗ from Eq. (1)). Consider inducing points zj and a subspace
of H: Hm = span{kγ(z1, ·), . . . , kγ(zm, ·)}, m� n, and let P be the projection operator with
range Hm. Denote the regularized empirical risk as L̂λ(f) = L̂(f) + λ‖f‖2H,

Assessing a particular hyperparameter configuration (λ, Z, γ) requires estimating the ex-
pected test error at the empirical risk minimizer trained with that configuration f̂λ,Z,γ ; the

optimal HPs then are found by (λ, Z, γ)∗ = arg min(λ,Z,γ) L(f̂λ,Z,γ). The following lemma
gives an upper bound on the ideal objective; a full proof is available in Appendix A.

Lemma 1. Under the assumptions of fixed-design regression we have that,

E
[
L(f̂λ,Z,γ)

]
≤2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
E
[
L̂(fλ,γ)

]
+ 2E

[
L̂(fλ,γ)

]
(8)

Proof sketch. We decompose the test error expectation in the following manner

E
[
L(f̂λ,Z,γ)

]
≤ E

[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)︸ ︷︷ ︸

1○

+ L̂(f̂λ,Z,γ) + λ‖f̂λ,Z,γ‖2H − L̂λ(Pfλ,γ)︸ ︷︷ ︸
2○

+ L̂λ(Pfλ,γ)︸ ︷︷ ︸
3○

]

by adding and subtracting L̂(f̂λ,Z,γ), L̂λ(Pfλ,γ) and summing the positive quantity λ‖f̂λ,Z,γ‖2H.

Since f̂λ,Z,γ is the minimizer of L̂(f̂λ,Z,γ)+λ‖f̂λ,Z,γ‖2H in the space Hm and since Pfλ,γ ∈ Hm,
the second term is negative and can be discarded.
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Term 1○ is the variance of N-KRR and can be computed exactly by noting that

E
[
L̂(f̂λ,Z,γ)

]
= E

[
n−1‖f̂λ,Z,γ(X)− f∗(X)− ε‖2

]
= E

[
L(f̂λ,Z,γ)

]
+ σ2 − 2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
where the first part cancels and we can ignore σ2 which is fixed and positive. Expanding the
inner product and taking its expectation we are left with

2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
=

2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

which is the effective dimension or the degrees of freedom of the hypothesis space Hm, times
the noise variance σ2.

Term 3○ takes into account the difference between estimators in H and in Hm. We begin
by upper-bounding the regularized empirical error of Pfλ,γ with a first part containing the
projection operator and a second term without P

E
[
L̂(Pfλ,γ) + λ‖Pfλ,γ‖2H

]
≤ E

[
2

n
‖K1/2(I − P )‖2‖fλ,γ‖2 + 2L̂λ(fλ,γ)

]
.

Now ‖K1/2(I −P )‖2 ≤ Tr(K − K̃) the difference between full and approximate kernels, and
‖fλ,γ‖2 ≤ λ−1L̂λ(fλ,γ) which leads us to the desired upper bound.

We now make two remarks on computing Eq. (8).

Remark 1. (Computing E
[
L̂λ(fλ,γ)

]
) In the spirit of complexity regularization we can

approximate this bias term by the empirical risk of N-KRR L̂λ(f̂λ,Z,γ), so that the final
objective will consist of a data-fit term plus two complexity terms: the effective dimension
and the Nyström approximation error.

Remark 2. (Estimating σ2) Once again following the principle of overpenalizing rather
than risking to overfit, we note that in binary classification the variance of Y is capped
at 1 for numerical reasons, while for regression we can preprocess the data dividing Y by
its standard deviation. Then according to Eq. (1) we must have that the label standard
deviation is greater than the noise standard deviation hence σ̂2 = 1 ≥ σ2.

Our final objective then has a form which we can compute efficiently

LProp =
2

n
Tr
(

(K̃ + nλI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
L̂λ(f̂λ,Z,γ)

+
2

n
‖f̂λ,Z,γ(X)− Y ‖2 + λ‖f̂λ,Z,γ‖2H. (9)

We make two further remarks on the connections to the objectives of Section 2.2.

Remark 3. (Similarities with complexity regularization) LProp has a similar form to Eq. (6)
with an extra term which corresponds to the variance introduced by the Nyström centers
which we were aiming for (up to multiplication by the KRR bias).

Remark 4. (Similarities with SGPR) Eq. (9) shares many similarities with the SGPR
objective: the log-determinant is replaced by the model’s effective dimension – another
measure of model complexity – and the term Tr(K − K̃) is present in both objectives.
Furthermore the data-fit term in LSGPR is

Y >(K̃ + nλI)−1Y =
1

λ
(n−1‖f̂λ,Z,γ(X)− Y ‖2 + λ‖f̂λ,Z,γ‖2H)

=
1

λ
L̂λ(f̂λ,Z,γ)

which is the same as in the proposed objective up to a factor λ−1.
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Figure 2: The effect of stochastic trace estimation. We plot the optimization curves of the
exact objective LProp (Deterministic) and the approximated objectives with 10, 20 and 100
STE vectors. On the four datasets we optimized m = 200 centers, λ and γ.

4 Scalable Approximations

Some practical considerations are needed to apply the objective of Eq. (9) to large-scale
datasets – for which direct computation is not possible due to space or time constraints. We
examine the terms comprising LProp and discuss their efficient computations. In Figure 2,
we verify that the resulting approximation is close to the exact objective.

Starting with the last part of the optimization objective (the one which measures data-fit)
we have that

‖f̂λ,Z,γ(X)− Y ‖2 + λ‖f̂λ,Z,γ‖2H = Y >(I −Knm(

B︷ ︸︸ ︷
K>nmKnm + nλKmm)−1K>nm)Y︸ ︷︷ ︸

=f̂λ,Z,γ(X)

which can be computed quickly using a fast, memory-efficient N-KRR solver such as Falkon (Meanti
et al., 2020) or EigenPro (Ma and Belkin, 2019). However we must also compute the ob-
jective’s gradients with respect to all HPs, and since efficient solvers proceed by iterative
minimization, such gradients cannot be trivially computed using automatic differentiation,
indeed, it would be in principle possible to unroll the optimization loops and differenti-
ate through them, the memory requirements for this operation would be too high for large
datasets.

Efficient gradients A solution to compute the gradients efficiently is to apply the chain
rule by hand until they can be expressed in terms of matrix vector products (∇K)v with
K any kernel matrix (i.e. Knm or Kmm) and v a vector. As an example the gradient of the
data-fit term is

∇(Y >KnmB
−1K>nmY ) = 2Y >(∇Knm)B−1K>nmY − Y >KnmB

−1(∇B)B−1K>nmY

where we can obtain all B−1K>nmY vectors via a non-differentiable N-KRR solver, and multi-
ply them by the (differentiable) kernel matrices for which gradients are required. Computing
these elementary operations is efficient, with essentially the same cost as the forward pass
Kv, and can be done row-wise over K. Block-wise computations are essential for low mem-
ory usage since kernel matrices tend to be huge but kernel-vector products are small, and
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they allow trivial parallelization across compute units (CPU cores or GPUs). In many cases
these operations can also be accelerated using KeOps (Charlier et al., 2021).

The remaining two terms of Eq. (9) are harder to compute. Note that in Tr(K − K̃) we
can often ignore Tr(K) since common kernel functions are trivial when computed between a
point and itself, but more in general it only requires evaluating the kernel function n times.
We thus focus on

Tr
(
K̃
)

= Tr
(
KnmK

†
mmK

>
nm

)
(10)

and on the effective dimension

Tr
(

(K̃ + λI)−1K̃
)

= Tr
(
KnmB

−1K>nm

)
. (11)

Both these terms are traces of huge n×n matrices. By their symmetry we can express them
as squared norms reducing the space requirements to n ×m, but they still remain slow to
compute: just the K>nmKnm term costs more than training a N-KRR model with the Falkon
solver.

Trace estimation A simple approximation can vastly improve the efficiency of com-
puting Equations (10), (11), and their gradients: stochastic trace estimation (STE). The
Hutchinson estimator (Hutchinson, 1990) approximates Tr(A) by 1

t

∑t
i=1 r

>
i Ari where ri

are zero mean, unit standard deviation random vectors. We can use this to estimate
Eq. (11) by running the Falkon solver with R = [r1, . . . , rt] instead of the labels Y to obtain
(K>nmKnm + λKmm)−1K>nmR, then multiplying the result by K>nmR and normalizing by the
number of stochastic estimators t. The same random vectors R can be used to compute
K>nmR for Eq. (10), coupled with the Cholesky decomposition of Kmm. STE reduces the
cost for both terms from O(nm2) to O(nmt) which is advantageous since t < m. In Figure 4
we investigate whether the approximate objective matches the exact one, and how t affects
the approximation. The observed behavior is that as few as 10 vectors are enough to ap-
proximate the full objective for a large part of the optimization run, but it can happen that
such coarse approximation causes the loss to diverge. Increasing t to 20 solves the numerical
issues, and on all the datasets tested we found t = 20 to be sufficient.

Alternatively, Eq. (10) can be approximated with a Nyström-like procedure: taking a
random subsample of size p from the whole dataset, denote Kpm as the kernel matrix between
such p points and the m Nyström centers; then

Tr
(
KnmK

†
mmK

>
nm

)
≈ n

p
Tr
(
KpmK

†
mmK

>
pm

)
which can be computed in pm2 + m3 operations. By choosing p ∼ m the runtime is then
O(m3), which does not depend on the dataset size, and is more efficient than the STE
approach. Unfortunately, this additional Nyström step cannot be effectively applied for
computing Eq. (11) where the inversion of B is the most time-consuming step.

5 Experiments

To validate the objective we are proposing for HP optimization of N-KRR models we ran a
series of experiments aimed at answering the following questions:

1. Since our objective is an upper-bound on the test error, is the over-penalization ac-
ceptable, and what are its biases?

2. What is its behavior during gradient-based optimization: does it tend to overfit, does
it lead to accurate models?

9



Figure 3: Effectiveness of test error proxies on a grid. The objective values (log transformed)
are plotted at different λ, γ points for the small-HIGGS dataset. Lighter points indicate a
smaller objective and hence a better hyperparameter configuration. The minimum of each
objective is denoted by a cross.

3. Does the approximation of Section 4 enable us to actually tune the hyperparameters
on large datasets?

The first point is a sanity check: would the objective be a good proxy for the test error
in a grid-search scenario over two hyperparameters (λ and γ with the RBF kernel). This
doesn’t necessarily transfer to larger HP spaces, but gives an indication of its qualitative
behavior. In Figure 3 we compare 5 objective functions to the test error on such 2D grid.
It is clear that the three functions which are unbiased estimators of the test error have very
similar landscapes. Both SGPR and the proposed objective instead have the tendency to
overpenalize: SGPR strongly disfavors low values of λ, while our objective prefers high λ and
γ. This latter feature is associated with simpler models: a high γ produces smooth functions
and a large λ restricts the size of the hypothesis.

We will see that the subdivision of objective functions into two distinct groups persists
during optimization. However, in general it will not be true that the unbiased objectives
produce models with lower test error than the overpenalized ones. The best performing
method is going to depend on the dataset.

Small-scale optimization We used the exact formulas, along with automatic differen-
tiation and the Adam optimizer to minimize the objectives on 20 datasets taken from the
UCI repository, the LibSVM datasets, or in-house sources (more details on the datasets in
Appendix B). We automated the optimization runs as much as possible to avoid having to
set many meta-hyperparameters: fixed learning rate, the initial value for λ set to 1/n and
the initial value for γ set with the median heuristic (Garreau et al., 2017). We used early
stopping when the objective values started increasing. The results – shown in Figure 4 –
confirm our previous observations: there are some datasets (among which small-HIGGS,
buzz, house-electric) on which the unbiased objectives overfit the training set while the pro-
posed proxy function does not. In fact in some cases the hyperparameters found with our
objective are much better than the ones found, for example, with the C-Reg objective. On
the other hand, there is another group of datasets (e.g. protein, energy or codrna) where the
extra bias of the proposed objective becomes detrimental as the optimization gets stuck into
a suboptimal configuration with higher test error than what would be attainable with an
unbiased objective.
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Figure 4: Empirical comparison of five objective functions for hyperparameter tuning. On
each dataset we optimized m = 100 Nyström centers, a separate lengthscale for each di-
mension and λ for 200 epochs with a learning rate of 0.05 using the Adam optimizer. Also
reported is the standard deviation from 5 runs of the same experiment with a different
random seed. Each dataset has its own error metric. Labels of regression datasets were
normalized to have unit standard deviation.

Among the three unbiased objectives, hold-out clearly performs the worst. This is due
to its high variance, and could be mitigated (at the expense of a higher computational cost)
by using k-fold cross-validation. The GCV and C-Reg objectives perform similarly to each
other in many cases. Especially in the image datasets however, GCV overfits more than
C-Reg.

SGPR closely matches the proposed objective as it doesn’t overfit. However, on several
datasets it produces worse HPs than our objective displaying a larger bias. On the other
hand there are other datasets for which the ranking is reversed, so there is no one clear
winner. We must note however that the SGPR objective cannot be efficiently computed due
to the log-determinant term, when datasets are large.

Large-scale optimization We tested the performance of the proposed objective with STE
on three large-scale datasets, comparing it against two variational sparse GP solvers (Gardner
et al., 2018; Matthews et al., 2017) which also learn a compact model with optimized inducing
points and a classic N-KRR model with lots of randomly chosen centers trained with Falkon.
Our tests are all performed in comparable conditions, details available in Appendix C. The
results in Table 1 tell us that we can approach (but not quite reach) the performance – both
in terms of speed and accuracy – of a very large model using a small fraction of the inducing
points. They also support the conclusion that our objective is effective at optimizing a large
number of hyperparameters, at least on par with methods in the GPR framework.
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Table 1: Error and running time of kernel solvers on large-scale datasets. We compare our
objective with two approximate GPR implementations and hand-tuned N-KRR (Falkon).

LProp GPyTorch GPFlow Falkon

Flights
n ≈ 106

error 0.794 0.803 0.790 0.758
time(s) 355 1862 1720 245
m 5000 1000 2000 105

Flights-
Cls
n ≈ 106

error 32.2 33.0 32.6 31.5
time(s) 310 1451 627 186
m 5000 1000 2000 105

Higgs
n ≈ 107

error 0.191 0.199 0.196 0.180
time(s) 1244 3171 1457 443
m 5000 1000 2000 105

6 Conclusions

In this paper, we improved the usability of large scale kernel methods proposing a gradient-
based solution for tuning a large number of hyperparameters, on large problems. We incor-
porate this method into an existing library for large scale kernel methods with GPUs. We
showed that it is possible to train compact Nyström KRR models if the centers are allowed
to deviate from the training set, which can speed up inference by orders of magnitude. A fu-
ture work will be to consider complex parametrized kernels which allow to improve the state
of the art of kernel-based models on structured datasets such as those containing images or
text.
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A Full Derivation of a Complexity Penalty for N-KRR

We split the proof of Theorem 1 into a few intermediate steps: after introducing the relevant
notation and definitions we give a few ways in which the Nyström estimator can be expressed,
useful in different parts of the proof. Then we proceed with three more technical lemmas, used
later on. We split the main proof into two parts to handle the two terms of the decomposition
introduced in the main text of the paper: Lemma 7 for the sampling variance and Lemma 8
for the inducing point variance. Finally we restate Theorem 1 for completeness, whose proof
follows directly from the two variance bounds.

A.1 Definitions

Using the same notation as in the main text we are given data {(xi, yi)}ni=1 ⊂ X × Y such
that

yi = f∗(xi) + εi

where f∗ : X → Y is an unknown function, and the noise εi is such that E[εi] = 0,E
[
ε2i
]

= σ2.
We let H be a RKHS and its subspace Hm = span{kγ(z1, ·), . . . , kγ(zm, ·)} defined using the
inducing points {zj}mj=1 ⊂ X . We define a few useful operators, for vectors v ∈ Rm and
w ∈ Rn:

Φ̃m : H → Rm, Φ̃m = (kγ(z1, ·), . . . , kγ(zm, ·))

Φ̃∗m : Rm → H, Φ̃∗mv =
m∑
j=1

vjkγ(zj , ·)

Φ : H → Rn, Φ = (kγ(x1, ·), . . . , kγ(xn, ·))

Φ∗ : Rn → H, Φ∗w =
n∑
i=1

wjkγ(xi, ·).

Let Σ : H → H = Φ∗Φ be the covariance operator, and K = ΦΦ∗ ∈ Rn×n the kernel operator.
Further define Knm = ΦΦ̃∗m ∈ Rn×m, Kmm = Φ̃mΦ̃∗m ∈ Rm×m, and the approximate kernel
K̃ = KnmK

†
mmK>nm ∈ Rn×n. The SVD of the linear operator Φ̃m is

Φ̃m = UΛV ∗

with U : Rk → Rm, Λ the diagonal matrix of singular values sorted in non-decreasing order,
V : Rk → H, k ≤ m such that U∗U = I, V ∗V = I. The projection operator with range Hm
is given by P = V V ∗.

The KRR estimator f̂λ,γ is defined as follows,

f̂λ,γ = arg min
f∈H

1

n
‖f(X)− Y ‖2 + λ‖f‖2H.

It can be shown (Caponnetto and De Vito, 2007) that f̂λ,γ is unique and can be expressed

in closed form as f̂λ,γ = Φ∗(K+nλI)−1Y . In the proofs, we will also use the noise-less KRR
estimator, denoted by fλ,γ and defined as,

fλ,γ = arg min
f∈H

1

n
‖f(X)− f∗(X)‖2 + λ‖f‖2H.

This estimator cannot be computed since we don’t have access to f∗, but it is easy to see
that

fλ,γ = Φ∗(K + nλI)−1f∗(X).
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The N-KRR estimator, found by solving

f̂λ,Z,γ = arg min
f∈Hm

1

n
‖f(X)− Y ‖2 + λ‖f‖2H.

is unique, and takes the form (see Rudi, Camoriano, et al. (2015), Lemma 1)

f̂λ,Z,γ = (PΣP + nλI)−1PΦ∗Y

where P is the projection operator with range Hm.
The estimator f̂λ,Z,γ can be characterized in different ways as described next.

A.2 Preliminary Results on the Nyström estimator

The following lemma provides three different formulation of the Nyström estimator. We will
use the notation A† to denote the Moore-Penrose pseudo-inverse of a matrix A.

Lemma 2. (Alternative forms of the Nyström estimator)
The following equalities hold

f̂λ,Z,γ = (PΣP + nλI)−1PΦ∗Y (12)

= V (V ∗ΣV + nλI)−1V ∗Φ∗Y (13)

= Φ̃∗m(K>nmKnm + λnKmm)†K>nmY (14)

This Lemma is a restatement of results already found in the literature (e.g. in Rudi,
Carratino, et al. (2017), Lemmas 2 and 3) which are condensed here with slightly different
proofs.

Proof. Going from Eq. (12) to Eq. (13) consists in expanding P = V V ∗ and applying the
push-through identity

(PΣP + nλI)−1PΦ∗Y = (V V ∗ΣV V ∗ + nλI)−1V V ∗Φ∗Y

= V (V ∗ΣV V ∗V + nλI)−1V ∗Φ∗Y

= V (V ∗ΣV + nλI)−1V ∗Φ∗Y.

To go from Eq. (14) to Eq. (13) we split the proof into two parts. We first expand Eq. (14)
rewriting the kernel matrices

Φ̃∗m(K>nmKnm + λnKmm)†K>nmY = Φ̃∗m(Φ̃mΦ∗ΦΦ̃∗m + nλΦ̃mΦ̃∗m)†K>nmY

= Φ̃∗m(Φ̃m(Σ + nλI)Φ̃∗m)†K>nmY.

Then, we use some properties of the pseudo-inverse (Ben-Israel and Greville, 2001) to simplify
(Φ̃m(Σ + nλI)Φ̃∗m)†, in particular, using the SVD of Φ̃m, write

(UΛ︸︷︷︸
F

V ∗(Σ + nλI)V︸ ︷︷ ︸
H

ΛU∗︸︷︷︸
F ∗

)†.

Since U has orthonormal columns, F † = (UΛ)† = Λ−1U † = Λ−1U∗. A consequence is that
(F ∗)† = (ΛU∗)† = (Λ−1U∗)∗ = UΛ−1. Then we split (FHF ∗)† into the pseudo-inverse of its
three components in two steps. Firstly (HF ∗)† = (F ∗)†H† if H†H = I and (F ∗)(F ∗)† = I:

1. Since H = V ∗(Σ + nλI)V is invertible, H† = H−1 and the first condition is verified.

2. F ∗(F ∗)† = ΛU∗UΛ−1 = I.
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Also we have (FHF ∗)† = (HF ∗)†F † if F †F = I and HF ∗(HF ∗)† = I:

1. F †F = Λ−1U∗UΛ = I,

2. HF ∗(HF ∗)† = HF ∗(F ∗)†H† = HH† = I.

The end result of this reasoning is that

(FHF ∗)† = (F ∗)†H−1F † = UΛ−1(V ∗(Σ + nλI)V )−1Λ−1U∗

and hence

Φ̃∗m(K>nmKnm + λnKmm)†K>nmY = V ΛU∗(UΛV ∗(Σ + nλI)V ΛU∗)†UΛV ∗Φ∗Y

= V ΛU∗UΛ−1(V ∗(Σ + nλI)V )−1Λ−1U∗UΛV ∗Φ∗Y

= V (V ∗ΣV + nλI)−1V ∗Φ∗Y

Another useful equivalent form, for the Nyström estimator is given in the following lemma

Lemma 3. Given the kernel matrices Knm ∈ Rn×m, Kmm ∈ Rm×m, and the Nyström kernel
K̃ = KnmK

†
mmK>nm ∈ Rn×n, the following holds

(K̃ + nλI)−1K̃ = Knm(K>nmKnm + nλKmm)†K>nm (15)

Proof. We state some facts about the kernel and image of the Nyström feature maps

(ker Φ̃m)⊥ = span{k(z1, ·), . . . , k(zm, ·)} = Im Φ̃∗m

(ker Φ̃∗m)⊥ = Im Φ̃m = ImKmm = (kerKmm)⊥ = W ⊆ Rm.

The space Rm is hence composed of Rm = W ⊕ ker Φ̃∗m. Take a vector v ∈ ker Φ̃∗m. We have
that Φ̃∗mv = 0, and (K>nmKnm + nλKmm)v = Φ̃m(Φ∗Φ + nλI)Φ̃∗mv = 0.

If instead v ∈W , then Φ̃m(Φ∗Φ + nλI)Φ̃∗mv ∈W . Hence we have that

K>nmKnm + nλKmm : W →W

and that Kmm is invertible when restricted to the subspace W , but also K>nmKnm +nλKmm

is invertible on W. Furthermore by the properties of the pseudo-inverse, we have that

(K>nmKnm + nλKmm)(K>nmKnm + nλKmm)† = PW (16)

with PW the projector onto set W .
Furthermore we have the following equalities concerning the projection operator: K†mmKmm =

PW , as before; since Knm = ΦΦ̃∗m, KnmPW = ΦΦ̃∗mPW = Knm and similarly its transpose
K>nm = Φ̃mΦ∗ hence PWK

>
nm = K>nm.

Using these properties we can say

KnmK
†
mm(K>nmKnm + nλKmm) = KnmK

†
mmK

>
nmKnm + nλKnmK

†
mmKmm

= KnmK
†
mmK

>
nmKnmPW + nλKnmPW

= (KnmK
†
mmK

>
nm + nλI)KnmPW

which implies that

(KnmK
†
mmK

>
nm + nλI)−1KnmK

†
mm(K>nmKnm + nλKmm) = KnmPW .
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Multiplying both sides by (K>nmKnm + nλKmm)†, and using Eq. (16)

(KnmK
†
mmK

>
nm + nλI)−1KnmK

†
mmPW = KnmPW (K>nmKnm + nλKmm)† (17)

Hence we can write the left-hand side of our statement (Eq. (15)), and use the properties
of projection PW and Eq. (17) to get

(KnmK
†
mmK

>
nm + nλI)−1KnmK

†
mmK

>
nm = (KnmK

†
mmK

>
nm + nλI)−1KnmK

†
mmPWK

>
nm

= KnmPW (K>nmKnm + nλKmm)†K>nm

= Knm(K>nmKnm + nλKmm)†K>nm

which is exactly the right-hand side of our statement.

Finally, the algebraic transformation given in the following lemma allows to go from a
form which frequently appears in proofs involving the Nyström estimator (Tr((I − P )Σ)) to
a form which can easily be computed: the trace difference between the full and the Nyström
kernel.

Lemma 4. Let Φ̃m : H → Rm be the kernel feature-map of the inducing points with SVD
Φ̃m = UΛV ∗, such that the projection operator onto Hm can be written P = V V ∗. Also let
K̃ = KnmK

†
mmK>nm be the Nyström kernel. Then the following equivalence holds

Tr((I − P )Σ) = Tr
(
K − K̃

)
. (18)

Proof. Note that we can write Kmm = Φ̃mΦ̃∗m = UΛV ∗V ΛU∗ = UΛ2U∗, which is a full-
rank factorization since both UΛ and ΛU> are full-rank. Then we can use the formula for
the full-rank factorization of the pseudoinverse (Ben-Israel and Greville (2001), Chapter 1,
Theorem 5, Equation 24) to get

K†mm = (UΛV ∗V ΛU∗)† = (UΛΛU∗)†

= UΛ(ΛU∗UΛ2U∗UΛ)−1ΛU∗

= UΛ−2U∗.

Now we can prove the statement by expanding the left-hand side, and recalling U>U = I

Tr((I − P )Σ) = Tr((I − V V ∗)Σ)

= Tr
(
(I − V (ΛU∗UΛ−2U∗UΛ)V ∗)Φ∗Φ

)
= Tr

(
Φ(I − V ΛU∗(Φ̃mΦ̃∗m)†UΛV ∗)Φ∗

)
= Tr

(
ΦΦ∗ − ΦΦ̃∗m(Φ̃mΦ̃∗m)†Φ̃mΦ∗

)
= Tr

(
K −KnmK

†
mmK

>
nm

)
= Tr

(
K − K̃

)
.

The following two lemmas provide some ancillary results which are used in the proof of
the main lemmas below.

Lemma 5. Let P be the projection operator onto Hm, and fλ,γ be the noise-less KRR
estimator. Then the following bound holds

‖Pfλ,γ‖2H ≤ ‖fλ,γ‖2. (19)
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Proof. This is a simple application of the definition of operator norm, coupled with the fact
that orthogonal projection operators have eigenvalues which are either 0 or 1 (hence their
norm is at most 1).

‖Pfλ,γ‖2H ≤ ‖P‖2‖fλ,γ‖2H
≤ ‖fλ,γ‖2H.

Lemma 6. Recall the notation L̂λ(f) = n−1‖f(X) − Y ‖2 + λ‖f‖2H, and let fλ,γ be the
noise-less KRR estimator as before. Then the following statement holds:

‖fλ,γ‖2H ≤ E

[
L̂λ(fλ,γ)

λ

]
(20)

where the expectation is taken with respect to the noise.

Proof. Recall that in the fixed design setting, given a fixed (i.e. not dependent on the
label-noise) estimator, we always have

E
[
L̂(f)

]
= L(f) + σ2

where σ2 is the label-noise variance.
In our case, noting that L(fλ,γ) is always non-negative

‖fλ,γ‖2H =
λ

λ
‖fλ,γ‖2H

≤
L(fλ,γ) + λ‖fλ,γ‖2H

λ

≤
L(fλ,γ) + σ2 + λ‖fλ,γ‖2H

λ

=
E
[
L̂λ(fλ,γ)

]
λ

.

A.3 Proof of the main Theorem

The proof of Theorem 1 starts from the error decomposition found in Section 3 which we
report here:

E
[
L(f̂λ,Z,γ)

]
≤ E

[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)︸ ︷︷ ︸

1○

+ L̂(f̂λ,Z,γ) + λ‖f̂λ,Z,γ‖2H − L̂λ(Pfλ,γ)︸ ︷︷ ︸
2○

+ L̂λ(Pfλ,γ)︸ ︷︷ ︸
3○

]
and proceeds by bounding terms 1○ (see Lemma 7) and 3○ (see Lemma 8). After the two
necessary lemmas we restate the proof of the main theorem which now becomes trivial.

Lemma 7. (Bounding the data-sampling variance)
Denoting by f̂λ,Z,γ the N-KRR estimator, the expected difference between its empirical and
test errors can be calculated exactly:

E
[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)

]
=

2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

with σ2 the noise variance and K̃ the Nyström kernel.
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Proof. For the sake of making the proof self-contained we repeat the reasoning of Section 3.
Starting with the expectation of the empirical error we decompose it into the expectation of
the test error minus an inner product term:

E
[
L̂(f̂λ,Z,γ)

]
= E

[
1

n
‖f̂λ,Z,γ(X)− f∗(X)− ε‖2

]
= E

[
L(f̂λ,Z,γ)

]
+ σ2 − 2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
.

The σ2 term is fixed for optimization purposes, so we must deal with the inner-product. We
use the form of f̂λ,Z,γ from Eq. (14), Lemma 2, and E[ε] = 0, and to clean the notation we
call H := Knm(K>nmKnm + nλKmm)†K>nm:

2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
=

2

n
E[〈H(f∗(X) + ε)− f∗(X), ε〉]

=
2

n
E
[
ε>Hε

]
=

2σ2

n
Tr(H),

and using Lemma 3 H can be expressed as (K̃ + nλI)−1K̃.
Going back to the original statement we have

E
[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)

]
= E

[
L(f̂λ,Z,γ)− L(f̂λ,Z,γ) +

2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)]

=
2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

Lemma 8. (Bounding the Nyström variance)
Under the fixed-design assumptions, denote by P the orthogonal projector onto space Hm,
by L̂λ(f) the regularized empirical risk of estimator f , and by fλ,γ ∈ H the noise-less KRR
estimator. Then the following upper-bound holds

E
[
L̂λ(Pfλ,γ)

]
≤ 2

nλ
Tr
(
K − K̃

)
E
[
L̂λ(fλ,γ)

]
+ 2E

[
L̂λ(fλ,γ)

]
. (21)

Proof. Note that for estimators f ∈ H we can always write f(X) = Φf . Hence for the
projected KRR estimator we use that (Pfλ,γ)(X) = ΦPfλ,γ . We start by rewriting the left
hand side to obtain a difference between projected and non-projected terms:

E
[
L̂(Pfλ,γ) + λ‖Pfλ,γ‖2H

]
= E

[
1

n
‖ΦPfλ,γ − f∗(X)− ε‖2 + λ‖Pfλ,γ‖2H

]
= E

[
1

n
‖ΦPfλ,γ − f∗(X)‖2 +

1

n
‖ε‖2 + λ‖Pfλ,γ‖2H

]
= E

[
1

n
‖ΦPfλ,γ − Φfλ,γ + Φfλ,γ − f∗(X)‖2 +

1

n
‖ε‖2 + λ‖Pfλ,γ‖2H

]
≤ E

[
2

n
‖ΦPfλ,γ − Φfλ,γ‖2 +

2

n
‖Φfλ,γ − f∗(X)‖2 +

2

n
‖ε‖2 + 2λ‖Pfλ,γ‖2H

]
where we used the fact that E[ε] = 0, and the triangle inequality in the last step.

By Lemma 5, and the definition of E
[
L̂(f)

]
we have that

E
[

2

n
‖Φfλ,γ − f∗(X)‖2 +

2

n
‖ε‖2 + 2λ‖Pfλ,γ‖2H

]
≤ 2E

[
L̂(fλ,γ)

]
.
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Next we use again the definition of operator norm to deal with the difference between
projected and non-projected noise-less KRR estimators:

E
[

2

n
‖ΦPfλ,γ − Φfλ,γ‖2

]
=

2

n
‖Φ(P − I)fλ,γ‖2

≤ 2

n
‖Φ(I − P )‖2‖fλ,γ‖2.

The first part of this latter term is

‖Φ(I − P )‖2 = ‖(I − P )Φ>Φ(I − P )‖ ≤ Tr
(

(I − P )Φ>Φ
)

= Tr((I − P )Σ)

since the trace norm controls the operator norm, and using the cyclic property of the trace and
the idempotence of the projection operator I−P . By Lemma 4 we have that ‖Φ(I−P )‖2 ≤
Tr
(
K − K̃

)
. For the second part we use Lemma 6 so that

‖fλ,γ‖2 ≤ E

[
L̂λ(fλ,γ)

λ

]

which concludes the proof.

We now have all the ingredients to prove Theorem 1 which we restate below for the
reader.

Theorem. (Restated from the main text)
Under the assumptions of fixed-design regression we have that,

E
[
L(f̂λ,Z,γ)

]
≤2σ2

n
Tr
(

(K̃ + λI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
E
[
L̂(fλ,γ)

]
+ 2E

[
L̂(fλ,γ)

]
(22)

Proof. The decomposition is the same:

E
[
L(f̂λ,Z,γ)

]
≤ E

[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)︸ ︷︷ ︸

1○

+ L̂(f̂λ,Z,γ) + λ‖f̂λ,Z,γ‖2H − L̂λ(Pfλ,γ)︸ ︷︷ ︸
2○

+ L̂λ(Pfλ,γ)︸ ︷︷ ︸
3○

]

where 2○ ≤ 0. We may then use Lemma 7 for term 1○ and Lemma 8 for term 3○ to obtain

E
[
L(f̂λ,Z,γ)

]
≤ 2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
E
[
L̂λ(fλ,γ)

]
+ 2E

[
L̂λ(fλ,γ)

]
.

B Datasets

We used a range of datasets which represent a wide spectrum of scenarios for which kernel
learning can be used. They can be divided into three groups: medium sized unstructured
datasets (both for regression and binary classification), medium sized image recognition
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datasets (multiclass classification) and large unstructured datasets (classification and regres-
sion). We applied similar preprocessing steps to all datasets (namely standardization of the
design matrix, standardization of the labels for regression datasets, one-hot encoding of the
labels for multiclass datasets). When an agreed-upon test-set existed we used it (e.g. for
MNIST), otherwise we used random 70/30 or 80/20 train/test set splits, with each exper-
iment repetition using a different split. Below we provide more details about the datasets
used, grouping several of them together if the same procedures apply. The canonical URLs
at which the datasets are available, along with their detailed dimensions and training/test
splits are shown in Table 2

The error metrics used are dataset-dependent, and outlined below. For regression prob-

lems we use the RMSE, defined as
√
n−1

∑n
i=1(yi − f̂(xi))2 and its normalized version the

NRMSE:

NRMSE :

∣∣∣∣∣∣
√

1
n

∑n
i=1(yi − f̂(xi))2

1
n

∑n
i=1 yi

∣∣∣∣∣∣.
For classification problems we use the fraction of misclassified examples (c-error), and the
area under the curve (AUC) metric.

SpaceGA, Abalone, MG, CpuSmall, Energy Small regression datasets between 1385
(MG) and 8192 (CpuSmall) samples, label standardization is performed and error is measured
as NRMSE. The predictor matrix is also standardized.

Road3D, Buzz, Protein, HouseElectric, BlogFeedback Regression datasets of medium
to large size from the UCI ML repositories. We used label standardization for Road3D,
BlogFeedback, Buzz and Protein, and an additional log transformation for HouseElectric.
Measured error is NRMSE. The predictor matrix is standardized.

MNIST, FashionMNIST, SVHN, CIFAR-10 Four standard image recognition datasets.
Here the labels are one-hot encoded (all datasets have 10 classes), and the design matrix is
normalized in the 0-1 range. Standard train/test splits are used.

Chiet A time-series dataset for short-term wind prediction. The labels and predictors are
standardized, and the error is measured with the NRMSE. A fixed split in time is used.

Ictus A dataset simulating brain MRI. Predictors are standardized and a random 80/20
split is used.

Cod-RNA, SVMGuide1, IJCNN1, CovType Four datasets for binary classification
ranging between approximately 3000 points for SvmGuide1 and 5×105 points for CovType.
The design matrix is standardized while the labels are −1 and +1.

Higgs, SmallHiggs HIGGS is a very large binary classification dataset from high energy
physics. We took a small random subsample to generate the SmallHiggs dataset, which has
predefined training and test sets. The design matrix is normalized by the features’ variance.
For the HIGGS dataset we measure the error as 1 minus the AUC.

Flights, Flights-Cls A regression dataset found in the literature (Hensman, Durrande,
et al., 2017; Hensman, Fusi, et al., 2013) which can also be used for binary classification by
thresholding the target at 0.
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Table 2: Key details on the datasets used.

n d train/test error

SpaceGA 3107 6 70%/30% NRMSE
Abalone 4177 8 70%/30% NRMSE
MG 1385 6 70%/30% NRMSE
CpuSmall 8192 12 70%/30% NRMSE
Energy 768 8 80%/20% NRMSE
Road3D 434 874 3 70%/30% RMSE
Buzz 2 049 280 11 70%/30% RMSE
Protein 45 730 9 80%/20% NRMSE
BlogFeedback 60 021 280 52 397/7624 RMSE
MNIST 70 000 784 60 000/10 000 10 class c-error
FashionMNIST 70 000 784 60 000/10 000 10 class c-error
SVHN 99 289 1024 73 257/26 032 10 class c-error
CIFAR-10 60 000 1024 50 000/10 000 10 class c-error
Chiet 34 059 144 26 227/7832 NRMSE
Ictus 29 545 992 80%/20% binary c-error
Cod-RNA 331 152 8 59 535/271 617 binary c-error
SVMGuide1 7089 4 3089/4000 binary c-error
IJCNN1 141 691 22 49 990/91 701 binary c-error
CovType 581 012 54 70%/30% binary c-error
SmallHiggs 30 000 28 10 000/20 000 binary c-error
Higgs 1.1×107 20 80%/20% 1 - AUC
Flights 5.93×106 8 66%/34% MSE
Flights-Cls 5.93×106 8 5 829 413/100 000 binary c-error

C Experiment Details

All experiments were run on a machine with a single NVIDIA Quadro RTX 6000 GPU,
and 256GB of RAM. The details of all hyperparameters and settings required to reproduce
our experiments are provided below. Relevant code is available in the repository at https:

//github.com/falkonml/falkon.

C.1 Small scale experiments

We ran the small scale experiments by optimizing the exact formulas for all objectives,
computed with Cholesky decompositions and solutions to triangular systems of equations.
We used the Adam optimizer with default settings and ran it for 200 epochs with a fixed
learning rate of 0.05. We optimized m = 100 inducing points initialized to the a random data
subset, used the Gaussian kernel with a separate length-scale for each data-dimension (the
initialization using the median heuristic was the same for each dimension), and the amount
of regularization λ which was initialized to 1/n. The validation set size (for the Hold-out
objective) was fixed to 60% of the full training data. While this may seem large, in our
setting the size of the hyperparameter space (in first approximation m×d) is larger than the
number of model parameters (m × o where o is the dimension of the target space Y, most
commonly o = 1).
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C.2 Large scale experiments

We ran the large-scale experiments for just the LProp objective, while the other performance
numbers in Table 1 are taken from Meanti et al. (2020). For our objective we again used the
Adam optimizer. For the Flights and Higgs dataset we trained with learning rate 0.05 for
20 epochs, while we trained Flights-Cls with a smaller learning rate of 0.02 for 10 epochs.
We used the Gaussian kernel with a single length-scale, initialized as in (Meanti et al., 2020)
(Flights σ0 = 1, Flights-Cls σ0 = 1, Higgs σ0 = 4) and λ0 = 1/n. We used t = 20 stochastic
trace estimation vectors for all three experiments, sampling them from the standard Gaussian
distribution. The STE vectors were kept fixed throughout optimization. The conjugate
gradient tolerance for the Falkon solver was set to 5×10−4 for Flights-Cls, and 1×10−3 for
Flights and Higgs (a higher tolerance corresponds to longer training time), while we always
capped the number of Falkon iterations to 100.
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Learn Fast, Segment Well: Fast Object
Segmentation Learning on the iCub Robot

Federico Ceola , Student Member, IEEE, Elisa Maiettini , Giulia Pasquale ,
Giacomo Meanti , Lorenzo Rosasco , and Lorenzo Natale , Senior Member, IEEE

Abstract—The visual system of a robot has different re-
quirements depending on the application: it may require high
accuracy or reliability, be constrained by limited resources or
need fast adaptation to dynamically changing environments.
In this work, we focus on the instance segmentation task and
provide a comprehensive study of different techniques that
allow adapting an object segmentation model in presence of
novel objects or different domains.

We propose a pipeline for fast instance segmentation learn-
ing designed for robotic applications where data come in
stream. It is based on an hybrid method leveraging on a pre-
trained CNN for feature extraction and fast-to-train Kernel-
based classifiers. We also propose a training protocol that
allows to shorten the training time by performing feature
extraction during the data acquisition. We benchmark the
proposed pipeline on two robotics datasets and we deploy it
on a real robot, i.e. the iCub humanoid. To this aim, we adapt
our method to an incremental setting in which novel objects
are learned on-line by the robot.

The code to reproduce the experiments is publicly available
on GitHub1.

Index Terms—Visual Learning, Object Detection, Segmenta-
tion and Categorization, Humanoid Robots, Efficient Instance
Segmentation Learning.

I. INTRODUCTION

PERCEIVING the environment is the first step for a
robot to interact with it. Robots may be required to

solve different tasks, as for instance grasping an object,
interacting with a human or navigate in the environment
avoiding obstacles.

Different applications have different requirements for the
robot vision system. For example, for an application in
which a robot interacts with a predefined set of objects,
fast learning is not the primary requirement. On the other
hand, when a robot is operating in a dynamic environment
(for instance a service robot operating in a hospital, a
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1https://github.com/hsp-iit/online-detection

supermarket or a domestic environment), fast adaptation is
fundamental.

The computer vision literature is progressing at fast pace
providing algorithms for object detection and segmentation
that are remarkably powerful. These methods, however, are
mostly based on deep neural networks and quite demanding
in terms of training samples and optimization time. For this
reason, they are badly suited for applications in robotics
that require fast adaptation. Because the dominant trend in
computer vision is to push performance as much as possible,
comparably little effort is spent to propose methods that
are designed to reduce training time. To fill this gap, in
this work, we propose a comprehensive analysis in which
we study various techniques for adaptation on a novel task.
In particular, we consider approaches based on deep neural
networks and on a combination of deep neural networks and
Kernel methods, focusing on the trade-off between training
time and accuracy.

We target the instance segmentation problem which con-
sists in classifying every pixel of an image as belonging
to an instance of a known object or to the background.
In particular, we consider the scenario in which the robot
encounters new objects during its operation and it is required
to adapt its vision system so that it is able to segment
them after a learning session that is as short as possible.
We observe that this scenario offers opportunities to shorten
the training time, for example if we are able to perform
some of the training steps (i.e., feature extraction) already
during data acquisition, and we propose a new method that
is specifically optimized to reduce training time without
compromising performance.

Specifically, we propose an instance segmentation
pipeline which extends and improves our previous work
[1]. In [1], we proposed a fast learning method for instance
segmentation of novel objects. One limitation of that method
was to rely on a pre-trained region proposal network. In
this work, we address this by making the region proposal
learning on-line too. While this improves performance, it
leads to a more complex and longer training pipeline if
addressed naı̈vely as it is done in [2]. To this aim, we
propose an approximated training protocol which can be
separated in two steps: (i) feature extraction and (ii) fast
and simultaneous training of the proposed approaches for
region proposal, object detection and mask prediction. We
show that this allows to further reduce the training time in
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the aforementioned robotic scenario.
In addition, we provide an extensive experimental analysis

to investigate the training time/accuracy trade-off on two
public datasets (i.e., YCB-Video [3] and HO-3D [4]). In
particular, we show that our method is much more accurate
than [1], while requiring a comparable training time. More-
over, the proposed method allows to obtain accuracy similar
to conventional fine-tuning approaches, while being trained
much faster.

In summary, the contributions of this work are:
• We propose a new pipeline and training protocol for in-

stance based object segmentation, which is specifically
designed for fast, on-line training.

• We benchmark the obtained results on two robotics
datasets, namely YCB-Video [3] and HO-3D [4].

• We provide an extensive study to compare our pipeline
against conventional fine-tuning techniques, with an in-
depth analysis of the trade-off between the required
training time and the achieved accuracy.

• We deploy and demonstrate the proposed training
pipeline on the iCub [5] humanoid robot, adapting
the algorithm for an incremental setting where target
classes are not known a-priori.

This paper is organized as follows. In Sec. II, we re-
view state-of-the-art approaches for instance segmentation,
focusing on methods designed for robotics. Then, in Sec. III,
we describe the proposed training pipeline for fast learning
of instance segmentation. In Sec. IV, we report on the
experimental setup used to validate our approach. We then
benchmark our approach on the two considered robotics
datasets in Sec. V. In Sec. VI, we specifically quantify the
benefit of the adaptation of the region proposal. In Sec. VII,
we simulate the robotic scenario in which data come into
stream and we discuss various performance trade-offs. Then,
in Sec. VIII, we describe an incremental version of the
proposed pipeline and we deploy it on a robotic platform.
Finally, in Sec. IX we draw conclusions.

II. RELATED WORK

In this section, we provide an overview of state-of-the-art
methods for instance segmentation (Sec. II-A), focusing on
their application in robotics (Sec. II-B).

A. Instance Segmentation

Approaches proposed in the literature to address instance
segmentation can be classified in the following three groups.
Detection-based instance segmentation. Methods in this
category extend approaches for object detection, by adding
a branch for mask prediction within the bounding boxes
proposed by the detector. Therefore, as for object detection
methods, they can be grouped in (i) multi-stage (also known
as region-based) and (ii) one-stage. Methods from the first
group rely on detectors that firstly predict a set of candidate
regions and then classify and refine each of them (e.g.
Faster R-CNN [6] or R-FCN [7]). One-stage detectors,

instead, solve the object detection task in one forward pass
of the network. Differently from multi-stage approaches,
they do not perform any per-region operation, like e.g. per-
region feature extraction and classification (see for instance,
EfficientDet [8] and YOLOv3 [9]).
The representative method among the multi-stage ap-
proaches is Mask R-CNN [10] that builds on top of the
detection method Faster R-CNN [6], by adding a branch
for mask prediction (segmentation branch) in parallel to the
one for bounding box classification and refinement (detec-
tion branch). In Mask R-CNN, input images are initially
processed by a convolutional backbone to extract a feature
map. This is then used by the Region Proposal Network
(RPN) to propose a set of Regions of Interest (RoIs) that
are candidate to contain an object, by associating a class-
agnostic objectness score to each region. Then, the RoI Align
layer associates a convolutional feature map to each RoI by
warping and cropping the output of the backbone. These
features are finally used for RoIs classification, refinement
and, subsequently, for mask prediction. In the literature,
many other state-of-the-art multi-stage approaches for in-
stance segmentation build on top of Mask R-CNN, like Mask
Scoring R-CNN [11] or PANet [12].
YOLACT [13] and BlendMask [14] are representative of
one-stage methods. YOLACT [13] extends a backbone
RetinaNet-like [15] detector with a segmentation branch.
BlendMask [14], instead, extends FCOS [16] for mask
predictions. An alternative paradigm for instance segmen-
tation based on the one-stage detector CenterNet [17] is
Deep Snake [18]. Differently from the methods mentioned
above that predict per-pixel confidence within the proposed
bounding boxes, it exploits the circular convolution [18] to
predict an offset for each mask vertex point, starting from
an initial coarse contour.
Labelling pixels followed by clustering. Approaches in this
group build on methods for semantic segmentation, which is
the task of classifying each pixel of an image according to its
category (being thus agnostic to different object instances).
Building on these methods, approaches in the literature
separate the different instances by clustering the predicted
pixels. As an example, SSAP [19] uses the so-called affinity
pyramid in parallel with a branch for semantic segmentation
to predict the probability that two pixels belong to the same
instance in a hierarchical manner. This is done with the aim
of grouping pixels of the same instance. InstanceCut [20],
instead, exploits an instance-agnostic segmentation and an
instance-aware edge predictor to compute the instance-aware
segmentation of an image. Finally, the method proposed
in [21] learns the watershed transform with a convolutional
neural network, the Deep Watershed Transform, given an
image and a semantic segmentation. This is done to predict
an energy map of the image, where the energy basins
represent the object instances. This information is then used,
with a cut at a single energy level, to produce connected
components corresponding to different object instances.
Dense sliding window. These approaches simultaneously
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predict mask instances and their class-agnostic or class-
specific scores. For instance, DeepMask [22] predicts in
parallel a class-agnostic mask and an objectness score for
each patch of an input image with a shallow convolutional
neural network. InstanceFCN [23], alternatively, predicts an
instance sensitive score map for each window of the con-
sidered input image. This method exploits local coherence
for class-agnostic masks prediction, and, as DeepMask, per-
window class-agnostic scores. Similarly, TensorMask [24]
predicts class-agnostic instance masks, but it leverages on
the proposed mask representation as a 4D tensor to preserve
the spatial information among pixels. Moreover, the classi-
fication branch of the proposed approach outputs a class-
specific score, thus improving the class-agnostic predictions
provided by DeepMask and InstanceFCN.

B. Instance Segmentation in Robotics

The instance segmentation task plays a central role in
robotics, not only for providing an accurate 2D scene
description for a robot, but also to support other tasks
like 6D object pose estimation [3] or computation of grasp
candidates [25]. In the literature, the problem is tackled in
different ways, depending on the target application. In [26]
and [27] the problem is addressed in cluttered scenarios,
while [28] and [29] propose adopting synthetic data (both
images and depth information) for training. In this work,
instead, we focus on learning to segment previously unseen
objects. In the following paragraphs, we will cover the main
literature on this topic.

Some works propose to generalize to unseen objects in a
class-agnostic fashion. However, these methods either focus
on particular environments, such as tabletop settings, as
in [30] and [31], or require some post-processing [32] which
may be unfeasible during the robot operation.

Approaches as the ones proposed in [33] and [34] learn
to segment new objects instances by interacting with them.
Nevertheless, similarly to the class-agnostic approaches,
they are constrained to tabletop settings.

The latest literature on Video Object Segmentation pro-
vides some methods for learning to segment a set of
previously unseen objects in videos. They deal with the
problem either in a semi-supervised way [35], leveraging on
the ground-truth masks of the objects in the first frame of
the video, or in an unsupervised fashion [36]. They allow to
learn to segment new object instances in a shorter time than
that required by the fully supervised approaches presented
in Sec. II-A. They typically rely on pre-training a network
for instance segmentation and on the subsequent fine-tuning
on the target video sequence frames [37]. Some of these
approaches have been targeted for robotic scenarios. For
instance, the method in [38] proposes to learn to segment
novel objects in a Human-Robot Interaction (HRI) applica-
tion, leveraging only on objects motion cues. Nevertheless,
these approaches are known to suffer from changes of the
objects appearance through the video sequence and error
drifts [35].

We instead focus on learning to segment novel objects in
a class-specific fashion, keeping the performance provided
by the state-of-the-art but reducing the required training
time. All the approaches mentioned in Sec. II-A rely on
convolutional neural networks that require to be trained end-
to-end via backpropagation and stochastic gradient descent.
Despite providing impressive performance, they require long
training time and large amounts of labeled images to be
optimized. These constraints make the adoption of such ap-
proaches in robotics difficult, especially for robots operating
in unconstrained environments, that require fast adaptation
to new objects.

Incremental learning aims at learning new objects in-
stances without degrading performance on the previously
known classes. Nevertheless, these approaches rarely focus
on speeding-up the training of the models, which may be
crucial in robotic applications. Moreover, the current litera-
ture in this field mainly focuses on object recognition [39],
[40], object detection [41], [42] or semantic segmentation
problems [43], while we target an instance segmentation
application. As we show in Sec. VIII, we deploy the
proposed pipeline on the iCub humanoid robot, adapting it
to an incremental setting, where the target classes are not
known a-priori.

In this work, we propose a pipeline and a training protocol
for instance segmentation which is specifically designed to
reduce training time, while preserving performance as much
as possible. This approach is based on Mask R-CNN [10], in
which the final layers of the RPN and of the detection and
segmentation branches have been replaced with “shallow”
classifiers based on a fast Kernel-based method optimized
for large scale problems [44], [45]. The backbone of the
network is trained off-line, while the Kernel-based classifiers
are adapted on-line. In this paper, we build on our previous
work [1], in that we include the adaptation of the region
proposal network and a novel training protocol which allows
to further reduce the training time. This makes the pipeline
suitable for on-line implementation.

III. METHODS
The proposed hybrid pipeline allows to quickly learn

to predict masks of previously unseen objects (TARGET-
TASK). We rely on convolutional weights pre-trained on a
different set of objects (FEATURE-TASK) and we rapidly
adapt three modules for region proposal, object detection
and mask prediction on the new task. This allows to achieve
on-line adaptation on novel objects and visual scenarios.

A. Overview of the Pipeline

The proposed pipeline is composed of four modules,
which are depicted in Fig. 1. They are:
• Feature Extraction Module. This is composed of

the first layers of Mask R-CNN, which has been pre-
trained off-line on the FEATURE-TASK. We use it to
extract the convolutional features to train the three on-
line modules on the TARGET-TASK. In particular, we
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Fig. 1: Overview of the proposed pipeline. The Feature Extraction Module is composed of Mask R-CNN’s first layers
trained off-line on the FEATURE-TASK. The three sets of features for (i) region proposal (Fr), (ii) object detection (Fd)
and (iii) instance segmentation (Fs) are fed to (i) the On-line RPN, (ii) the On-line Detection Module and (iii) the On-line
Segmentation Module. At inference time, we substitute the final layers of the Mask R-CNN’s RPN with the On-line RPN
trained on the TARGET-TASK and, as in Mask R-CNN, the output of the On-line Detection Module is fed as input to the
RoI Align to compute the objects masks within the proposed bounding boxes.

use it to extract the features Fr, Fd and Fs from the
penultimate layers of the RPN, and of the detection and
segmentation branches, respectively.

• On-line RPN. This replaces the last layers of the Mask
R-CNN’s RPN to predict a set of regions that likely
contain an object in an image, given a feature map Fr.
We describe the training procedure in Sec. III-B.

• On-line Detection Module. This is composed of clas-
sifiers and regressors that, starting from a set of feature
tensors Fd, classify and refine the regions proposed by
the On-line RPN. See Sec. III-B for the description of
the training procedure.

• On-line Segmentation Module. Given a feature map
Fs, this module predicts the masks of the objects within
the detections proposed by the On-line Detection Mod-
ule. We describe the training procedure in Sec. III-C.

In the three on-line modules described above, we use
FALKON for classification. This is a Kernel-based method
optimized for large-scale problems [44]. In particular, we
use the implementation available in [45].

B. Bounding Box Learning

The prediction of region proposal candidates and object
detection are problems that share similarities. In both cases,
input bounding boxes are classified and then refined, starting
from associated feature tensors as input. In our pipeline,
these problems are carried out by the On-line RPN and
the On-line Detection Module, which are implemented by
Nc FALKON binary classifiers and 4Nc Regularized Least
Squares (RLS) regressors [46]. Specifically, Nc represents:
(i) the number of anchors for the On-line RPN (see the

following paragraphs) or (ii) the number of semantic classes
of the TARGET-TASK for the On-line Detection Module. In
both the on-line modules, we tackle the well known problem
of foreground-background imbalance of training samples in
object detection [15] by adopting the Minibootstrap strategy
proposed in [47], [48] for FALKON training. The Mini-
bootstrap is an approximated procedure for hard negatives
mining [49], [46] that allows to iteratively select a subset of
hard negative samples to balance the training sets associated
to each of the Nc classes. We report the pseudo-code of the
Minibootstrap procedure in App. E. The RLS regressors for
boxes refinement, instead, are trained on a set of positive
(foreground) instances.

In the On-line RPN, the classifiers are trained on a binary
task to discriminate anchors representing the background
from those representing RoIs, i.e., containing an instance
of any of the TARGET-TASK classes. An anchor [6] is a
bounding box of a predefined size and aspect ratio centered
on an image pixel. For each pixel, there are a fixed number
of anchors of different form factors and one classifier is
instantiated for each of them. In the On-line Detection,
instead, a binary classifier is instantiated for each class. Each
classifier is trained to discriminate regions proposed by the
On-line RPN depicting an object of its class from other
classes or background.
On-line RPN. In Mask R-CNN’s RPN, the classification
is performed on a set of anchors A (i.e., Nc = A). Given
the input feature map computed by the backbone of height
h, width w and with f channels, the RPN firstly processes
it with a convolutional layer to obtain a feature map Fr

of the same size (h×w×f ). Then, Fr is processed by two
convolutional layers. One is composed of A convolutional
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Fig. 2: On-line RPN. Given the feature map Fr, this
is unrolled into h×w tensors of features of size f (Fr

Unrolled). A subset of these features is chosen to train a
FALKON classifier and four RLS regressors for each anchor.

kernels which compute the objectness scores of each con-
sidered anchor. This layer computes an output tensor of size
h×w×A, in which the ijath element is the objectness score
of the ath anchor in the location (i, j). The other output
layer, instead, is composed of 4A kernels for the refinement
of such bounding boxes. It computes h×w×4A values for
the refinement of the regions associated to the anchors at
each location (i, j). Both the output convolutional kernels
have size 1 and stride 1.
As shown in Fig. 2, we replace the A convolutional ker-
nels for the computation of the objectness scores with A
FALKON binary classifiers and we train them with the
Minibootstrap. We use the h×w tensors of size f resulting
from the flattening of the feature maps Fr as training fea-
tures. The considered positive features are those associated
to a specific location of an anchor whose Intersection over
Union (IoU) with at least a ground-truth bounding box is
greater than 0.72 (in case there are no anchors overlapping
the ground-truth bounding boxes with IoU > 0.7, the ones
with the highest IoU are chosen as positives). The feature
tensors for the background, instead, are those whose IoU
with the ground-truths is smaller than 0.3. Similarly, we
replace the 4A convolutional kernels for the refinement of
the proposed regions with 4A RLS regressors (4 RLS for
each anchor). We consider as training samples for the 4
regressors associated to each anchor a set of features chosen
as the positive samples for the FALKON classifiers, but
setting the IoU threshold to 0.63.
On-line object detection. We train the On-line Detection
Module with the strategy illustrated above, considering the
N classes of the TARGET-TASK (i.e., Nc = N ). As training
samples, we consider the tensors of features produced by the

2For the On-line RPN, we set the positive and negative thresholds for
the classifiers as in Mask R-CNN’s RPN [10].

3We set the value of the IoU threshold for the RLS regressors as in
R-CNN [46].

Fig. 3: On-line Segmentation. Given the feature map Fs

associated to a RoI of class i, this is unrolled into s×s
tensors of features of size f (Fs Unrolled) from which
positive and negative features are sampled to train the ith

FALKON per-pixel classifier. Note that this procedure is
performed for each RoI of the N classes.

penultimate layer of the Mask R-CNN’s detection branch
(Fd) associated to each RoI proposed by the region proposal
method. In particular, we consider as positive samples for the
nth FALKON classifier, those RoIs with IoU > 0.64 with a
ground-truth box of an instance of class n (n ∈ [1, . . . , N ]).
The same positive samples are also used for training the nth

RLS regressor3. Then, as negative samples, we consider the
RoIs with IoU < 0.35 with the ground-truths of class n.

C. On-line Segmentation

In Mask R-CNN, in the configuration that does not use
the Feature Pyramid Network (FPN) [50] in the backbone,
the segmentation branch is a shallow fully convolutional
network (FCN) composed of two layers that takes as input
a feature map of size s×s×f associated to each RoI. The
first layer processes the input feature map into another
feature map Fs of the same size. The last convolutional
layer, instead, has N channels (one for each class of the
TARGET-TASK) and kernel size 1 and stride 1. Therefore,
the output of the Mask R-CNN’s segmentation branch is a
tensor of size s×s×N , where the ijnth value of such tensor
represents the confidence that the pixel in the location (i, j)
of the RoI corresponds to the nth class.

For the fast learning of the On-line Segmentation Module,
we rely on the first layer of the segmentation branch for
feature extraction, but we substitute the last convolutional
layer for per-pixel prediction with N FALKON binary
classifiers. To train such classifiers, we consider the ground-
truth boxes of each training image, we compute the feature
map of size s×s×f for each of them and we flatten each of
such feature maps into s×s tensors of size f , as shown in
Fig. 3. Among these tensors, we consider as positive samples
for the nth classifier the features associated to the pixels in
the ground-truth masks of class n. Instead, we consider as
negative samples the features associated to the background
pixels contained in ground-truth bounding boxes of class

4We consider as positive samples for the classifiers in the On-line
Detection Module the training features for region refinement as in [10].

5For the classifiers in the On-line Detection Module we define the
negative samples as in [46].
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Fig. 4: Ours training protocol. We rely on the feature extraction layers of Mask R-CNN pre-trained on the FEATURE-
TASK to simultaneously extract Fr, Fd and Fs. We then use these features to train the three on-line modules on the
TARGET-TASK. The values on the arrows correspond to the training steps in Sec. III-D.

n. Given the great amount of training samples, to speed-
up the training procedure, we randomly subsample both the
positive and the negative features by a factor r. According
to the analysis provided in [1], we set r to 0.3.

D. Training Protocol

In this work, we propose a training protocol that allows
to quickly update the On-line RPN, the On-line Detection
Module and the On-line Segmentation Module. The proposed
method (referred to as Ours) starts with the weights of Mask
R-CNN pre-trained on the FEATURE-TASK and adapts the
on-line modules on the TARGET-TASK. This is composed
of the two steps depicted in Fig. 4:

1) Feature extraction. This is done with a forward pass
of the pre-trained Mask R-CNN feature extractor to
compute Fr, Fd and Fs.

2) On-line training. The set of features Fr, Fd and Fs

are used to respectively train (i) the On-line RPN, (ii)
the On-line Detection Module and (iii) the On-line
Segmentation Module on the TARGET-TASK.

The training features fed to the On-line Detection Module
are those associated to the regions proposed by the Mask
R-CNN’s RPN pre-trained on the FEATURE-TASK. These
regions are different (and therefore sub-optimal) with respect
to the ones that would be proposed by a region proposal
method that has been adapted on the TARGET-TASK. Train-
ing the On-line Detection Module using features extracted
from the On-line RPN after its adaptation is possible. This,
however, would require two feature extraction steps (one for
training the On-line RPN and the other to train the On-line
Detection Module and the On-line Segmentation Module),
which is computationally expensive. For this reason, we
consider the On-line Detection Module obtained with Ours
as an approximation of the one that would be provided by
the serial training (see Sec. VI-B). Instead, the adaptation
of the On-line Segmentation Module is not affected by this
approximation, since we sample the training features for this
module from the ground-truth bounding boxes.

While this approximation is a key component of the pro-
posed training protocol, at inference time features fed to the
On-line Detection Module and to the On-line Segmentation
Module are those associated to the regions proposed by the
On-line RPN trained on the TARGET-TASK, as depicted in
Fig. 1.

In this work, we show that a single feature extraction step
can be performed paying a small price in terms of accuracy

(see Sec. VI-B), allowing to further improve the training in
the on-line implementation (see Sec. VII and Sec. VIII).

IV. EXPERIMENTAL SETUP

In this section, we report on the experimental settings
that we employ for validating the proposed approach. We
first evaluate our approach in an off-line setting (Sec. V, VI
and VII), analyzing performance on two different robotics
datasets. Then, we validate it in a real robotic application
(Sec. VIII), i.e., in an on-line setting. Therefore, in this
section, we firstly report on the off-line experimental setup
(Sec. IV-A) and the datasets (Sec. IV-B) that we use in our
experiments. Then, in Sec. IV-C, we describe the settings
considered for the deployment in a real robotic scenario.

A. Off-line Experiments

For our experiments, we compare the proposed method,
Ours, with two Mask R-CNN [10] baselines. In particular,
we consider:
• Mask R-CNN (output layers): starting from the Mask

R-CNN weights pre-trained on the FEATURE-TASK,
we re-initialize the output layers of the RPN and of
the detection and segmentation branches, and we fine-
tune them on the TARGET-TASK, freezing all the other
weights of the Mask R-CNN network.

• Mask R-CNN (full): we use the weights of Mask R-
CNN pre-trained on the FEATURE-TASK as a warm-
restart to train Mask R-CNN on the TARGET-TASK.

Specifically, we rely on Mask R-CNN [10], using ResNet-
50 [51] as backbone, for the feature extraction of Ours and
for the baselines. In App. A, we report a summary of the
training protocols used in this work.

In all cases, we choose hyper-parameters providing the
highest performance on a validation set. Specifically, for
Ours we cross-validate the standard deviation of FALKON’s
Gaussian kernels (namely, σ) and FALKON’s regularization
parameter (namely, λ) for the On-line RPN, the On-line
Detection Module and the On-line Segmentation Module.
Regarding the baselines, instead, for the experiments in
Sec. V and VI, we train Mask R-CNN (output layers) and
Mask R-CNN (full) for the number of epochs that provides
the highest segmentation accuracy on the validation set.

For Ours, we set the number of Nyström centers M of the
FALKON classifiers composing the On-line RPN, the On-
line Detection Module and the On-line Segmentation Module
to 1000, 1000 and 500, respectively. Moreover, to train both
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the On-line RPN and the On-line Detection Module, we
set to 2000 the size of the batches, BS, considered in the
Minibootstrap.
Evaluation metrics. We consider the mean Average Pre-
cision (mAP) as defined in [52] for both object detection
and segmentation. Specifically, the accuracy of the predicted
bounding boxes will be referred to as mAP bbox(%) and the
accuracy of the mask instances as mAP segm(%). For each
of them, we consider as positive matches the bounding boxes
and the masks whose IoU with the ground-truths is greater
or equal to a threshold. In our experiments we consider two
different thresholds to evaluate different levels of accuracy,
namely, 50% (mAP50) and 70% (mAP70). In App. A we
overview the acronyms considered for mAP computation.
We also evaluate the methods on the time required for
training6. For the Mask R-CNN baselines, the training time
is the time needed for their optimization via backpropagation
and stochastic gradient descent. As regards Ours, instead,
except where differently specified, it is the time necessary
for extracting the features and training the on-line modules.
For each experiment, we run three trials for each method.
We report results in terms of average and standard deviation
of the accuracy and of average training time.

B. Datasets

In our experiments we consider three datasets. Specifi-
cally, we use MS COCO [53] as FEATURE-TASK and the
two datasets YCB-Video [3] and HO-3D [4] as TARGET-
TASKs to validate our approach. We opted to validate our
system on these datasets, which are composed of streams
of frames in tabletop and hand-held settings, to be close to
our target application. These datasets are usually considered
for the task of 6D object pose estimation, however, they are
annotated also with object masks. Specifically:
• MS COCO [53] is a general-purpose dataset, which

contains 80 objects categories, for object detection and
segmentation.

• YCB-Video [3] is a dataset for 6D pose estimation
in which 21 objects from the YCB [54] dataset are
arranged in cluttered tabletop scenarios, therefore pre-
senting strong occlusions. It is composed of video
sequences where the tabletop scenes are recorded under
different viewpoints. We use as training images a set
of 11320 images, obtained by extracting one image
every ten from the total 80 training video sequences.
As test set, instead, we consider the 2949 keyframe [3]
images chosen from the remaining 12 sequences. For
hyper-parameters cross-validation, we randomly select
a subset of 1000 images from the 12 test sequences,
excluding the keyframe set.

• HO-3D [4] is a dataset for hand-object pose estimation,
in which objects are a subset of the ones in YCB-
Video. It is composed of video sequences, in which a

6All the off-line experiments have been performed on a machine
equipped with Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz, and a single
NVIDIA Quadro RTX 6000.

moving hand-held object is shown to a fixed camera.
For choosing the training and test sets, we split the
available annotated sequences in HO-3D7, such that,
we gather one and at most four sequences for testing
and training, respectively. In particular, we use 20156
images as training set, which result from the selection
of one every two images from 34 sequences. Instead,
we consider as test set 2020 images chosen one every
five frames taken from other 9 sequences. For hyper-
parameters cross-validation, we consider 2160 frames
chosen one every five images, from a subset of 9
sequences taken from the training set (see App. B for
further details).

C. Robotic Setup

We deploy the proposed pipeline for on-line instance seg-
mentation on the humanoid robot iCub8 [5]. It is equipped
with a Intel(R) RealSense D415 on a headset for the
acquisition of RGB images and depth information. We
rely on the YARP [55] middleware for the implementation
and the communication between the different modules (see
Sec. VIII). With the exception of the proposed one, we rely
on publicly available modules9. We set all the training hyper-
parameters as described in Sec. IV-A.

V. RESULTS

In this section, we benchmark the proposed approach on
YCB-Video (Sec. V-A) and HO-3D (Sec. V-B).

A. Benchmark on YCB-Video

We consider the 21 objects from YCB-Video as TARGET-
TASK and we compare the performance of Ours against
the baseline Mask R-CNN (output layers). We also report
the performance of Mask R-CNN (full), which can be
considered as an upper-bound because, differently from the
proposed method, it updates both the feature extraction
layers and the output layers (i.e., the backbone, the RPN
and the detection and segmentation branches) fitting more
the visual domain of the TARGET-TASK. In Ours, we
empirically set the number of batches in the Minibootstrap
to 10, to achieve the best training time/accuracy trade-off
(see Fig. 6 for details).

Results in Tab. I show that Ours achieves similar per-
formance as Mask R-CNN (output layers) in a fraction
(∼12.8× smaller) of the training time. In comparison with
the upper bound, Ours is not as accurate as Mask R-
CNN (full) (∼9.0% less precise if we consider the mAP50
segm(%)), but is trained ∼6.9× faster.

7Note that, in HO-3D, the annotations for instance segmentation are not
provided for the test set. Therefore, we extract training and test sequences
from the original HO-3D training set.

8We run the module with the proposed method on a machine equipped
with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, and a single NVIDIA
RTX 2080 Ti.

9https://github.com/robotology

https://github.com/robotology
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Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 89.66 ± 0.47 91.26 ± 0.56 84.67 ± 0.81 80.26 ± 0.59 1h 35m 42s

Mask R-CNN (output layers) 84.51 ± 0.40 81.70 ± 0.17 75.81 ± 0.30 70.46 ± 0.24 2h 57m 12s
Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

TABLE I: Benchmark on the YCB-Video dataset. We compare the proposed approach Ours to the baseline Mask R-CNN
(output layers) and to the upper bound Mask R-CNN (full).

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 92.21 ± 0.88 90.70 ± 0.17 86.73 ± 0.71 77.25 ± 0.62 38m 38s

Mask R-CNN (output layers) 88.05 ± 0.32 86.11 ± 0.29 74.75 ± 0.19 65.04 ± 0.62 1h 50m 33s
Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

TABLE II: Benchmark on the HO-3D dataset. We report on the performance obtained with Ours and we compare it to
Mask R-CNN (output layers) and Mask R-CNN (full) for the analysis in Sec. V-B.

B. Benchmark on HO-3D

We evaluate the proposed approach on the HO-3D dataset.
As in Sec. V-A, we compare Ours with Mask R-CNN
(output layers) and we consider Mask R-CNN (full) as
upper bound. For this experiment, we empirically set the
number of the Minibootstrap batches of the On-line RPN
and of the On-line Detection Module in Ours to 12 and we
report the obtained results in Tab. II.

Similarly to the experiment on YCB-Video, Ours can be
trained ∼2.3× and ∼6.6× faster than Mask R-CNN (full)
and Mask R-CNN (output layers), respectively. Models
obtained with Ours are slightly less precise than those
provided by Mask R-CNN (output layers) for the task of
instance segmentation, while they are ∼15.3% less accurate
if we consider the mAP70 bbox(%). We will show in
Sec. VI-B that this gap can be recovered with a different
training protocol (Ours Serial in Sec. VI-B). However,
Ours, achieves the best training time with an accuracy that
is close to the state-of-the-art.

VI. FAST REGION PROPOSAL ADAPTATION
In this section, we investigate the impact of region pro-

posal adaptation on the overall performance. In particular,
in Sec. VI-A, we show that, with respect to our previous
work [1], updating the RPN provides a significant gain in
accuracy, maintaining a comparable training time. Then, in
Sec. VI-B we analyze the speed/accuracy trade-off achieved
with the proposed approximated training protocol.

A. Is Region Proposal Adaptation Key to Performance?

The adaptation of the region proposal on a new task
provides a significant gain in accuracy for object detection
(in this paper we report some evidence while additional
experiments can be found in [2]). In particular, adapting
the region proposal is especially effective when FEATURE-
TASK and TARGET-TASK present a significant domain
shift (which represents a common scenario in robotics). In
this section, we show that better region proposals improves
also the downstream mask estimation.

For testing performance under domain shift, we con-
sider as FEATURE-TASK the categorization task of the
general-purpose dataset MS COCO. Instead, we consider

as TARGET-TASKs the identification tasks of the YCB-
Video and HO-3D datasets, which depict tabletop and in-
hand scenarios, respectively.

We consider Mask R-CNN (full) as the upper bound
of the experiment, since it updates the entire network on
the new task. We compare Ours with the method proposed
in [1] (Sec. III), namely O-OS10, in which the RPN remains
constant during training on the TARGET-TASK. For a fair
comparison, we set O-OS training hyper-parameters accord-
ing to Sec. IV-A (i.e., changing the number of Nyström
centers of FALKON in the On-line Detection Module and
in the On-line Segmentation Module with respect to [1]).

Results in Tab. III and in Tab. IV show that, as expected,
there is an accuracy gap between Mask R-CNN (full)
and all the other considered methods (Ours and O-OS).
However, notably, the adaptation of the region proposal on
the TARGET-TASK in Ours allows to significantly reduce
the accuracy gap between Mask R-CNN (full) and O-OS.
Moreover, Ours outperforms the accuracy of O-OS with
a comparable training time. For instance, in the HO-3D
experiment (see Tab. IV), the segmentation mAP50 obtained
with Ours is, on average, ∼7.1 points greater than O-OS,
with a difference in training time of only 3m 20s.

B. Approximated On-line Training: Speed/Accuracy Trade-
off

In this section, we evaluate the impact of the approxi-
mation in Ours. To do this, we compare it with a different
training protocol (referred to as Ours Serial). This relies on
the same on-line modules as Ours. However, Ours Serial
performs two steps of feature extraction, one to train the On-
line RPN and the other for the On-line Detection Module
and the On-line Segmentation Module. This latter is done
after region proposal adaptation and allows to use better
RoIs to train the module for on-line detection, improving
the overall performance of the pipeline. In details, Ours
Serial is composed of the four steps depicted in Fig. 5:

1) Feature extraction for region proposal. This is done
to extract Fr (see Sec. III-A) on the images of the
TARGET-TASK.

10In [1], O-OS is referred to as Ours.
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Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 89.66 ± 0.47 91.26 ± 0.56 84.67 ± 0.81 80.26 ± 0.59 1h 35m 42s

O-OS 76.15 ± 0.31 74.44 ± 0.11 68.06 ± 0.34 63.90 ± 0.36 11m 14s
Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

TABLE III: Comparison between Ours, Mask R-CNN (full) and O-OS trained on YCB-Video. For O-OS, we reproduce
the experiment of Tab. I in [1], but we run the experiment three times (reporting mean and standard deviation of the
obtained results) on the hardware used for this work and we set the training hyper-parameters as described in Sec. VI-A.

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 92.21 ± 0.88 90.70 ± 0.17 86.73 ± 0.71 77.25 ± 0.62 38m 38s

O-OS 75.27 ± 0.26 77.42 ± 0.45 57.89 ± 0.24 57.86 ± 0.21 13m 31s
Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

TABLE IV: We report on the performance obtained on HO-3D with Ours and we compare it to Mask R-CNN (full) and
O-OS for the analysis in Sec. VI-A.

Fig. 5: Ours Serial training protocol. We rely on the feature extraction layers of Mask R-CNN pre-trained on the FEATURE-
TASK to extract Fr and we train the On-line RPN on the TARGET-TASK. Then, we rely on the feature extraction layers of
Mask R-CNN and on the On-line RPN trained on the TARGET-TASK to extract Fd and Fs. Finally, we train the On-line
Detection Module and the On-line Segmentation Module on the TARGET-TASK. The values on the arrows correspond to
the training steps in Sec. VI-B.

2) These features are then used to train the On-line RPN
on the TARGET-TASK, as described in Sec. III-B.

3) The new On-line RPN is used to extract more precise
regions and the corresponding features for detection
and segmentation (respectively, Fd and Fs).

4) Fd and Fs are used to train the On-line Detection
Module and the On-line Segmentation Module on
the TARGET-TASK, as described in Sec. III-B and
Sec. III-C, respectively.

We evaluate Ours and Ours Serial in the same setting
used for previous experiments (Sec. V and Sec. VI-A). In
Ours Serial, we set the Nyström centers of the FALKON
classifiers and the batch size BS considered in the Miniboot-
strap to train the On-line RPN and the On-line Detection
Module as described in Sec. IV-A. Moreover, we empirically
set the number of Minibootstrap iterations nB to 8 and 7 in
the experiments on YCB-Video and HO-3D, respectively.

We report results in Tab. V (YCB-Video) and in Tab. VI
(HO-3D). Specifically, the first one shows that the accuracy
of Ours in the YCB-Video experiment is comparable to the
one of Ours Serial, demonstrating that the approximated
training procedure substantially does not affect performance
in this case. Instead, in the HO-3D experiment (see Tab. VI),
Ours is slightly less precise than Ours Serial for the task of
instance segmentation, while being ∼11.6% less accurate if
we consider the mAP70 bbox(%). However, Ours is trained
∼1.8× and ∼2.2× faster than Ours Serial in the YCB-
Video and in the HO-3D experiments, respectively.

Still, with respect to Mask R-CNN (output layers),
Ours Serial achieves comparable performance, but with
training time that is much shorter. However, the approxi-

mated training protocol proposed in this paper allows further
optimization which is discussed in the next section.

VII. STREAM-BASED INSTANCE
SEGMENTATION

We now consider a robotic application, in which the robot
is tasked to learn new objects on-line, while automatically
acquiring training samples. In this case, training data arrive
continuously in stream, and the robot is forced to either use
them immediately or store them for later use. We investigate
to what extent it is possible to reduce the training time and
how this affects segmentation performance.

Because data acquisition takes a considerable amount of
time, there is the opportunity to perform, in parallel, some
of the processing required for training. In the proposed
pipeline, for example, the training protocol Ours has been
designed to separate feature extraction and the training of
the Kernel-based components. In this case, feature extraction
can be performed while images and ground-truth labels are
received by the robot. In this section, we investigate to
what extent this possibility can be exploited also with the
conventional Mask R-CNN architecture.

We compare the proposed Ours with three different Mask
R-CNN baselines. Specifically, we consider Mask R-CNN
(full) and two variations of Mask R-CNN (output layers)
as presented in Sec. IV-A.

Because images arrive in a stream, similar views of
the same objects are represented in subsequent frames. In
App. C we show that a proper training of Mask R-CNN
(full) and Mask R-CNN (output layers) requires that
the images are shuffled randomly. This requires storing all
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Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (output layers) 84.51 ± 0.40 81.70 ± 0.17 75.81 ± 0.30 70.46 ± 0.24 2h 57m 12s

Ours Serial 83.97 ± 0.59 83.00 ± 0.78 75.06 ± 0.88 69.12 ± 0.56 24m 42s
Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

TABLE V: Comparison between the proposed approach Ours, the baseline Mask R-CNN (output layers) and Ours
Serial trained on YCB-Video. Refer to Sec. VI-B for further details.

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (output layers) 88.05 ± 0.32 86.11 ± 0.29 74.75 ± 0.19 65.04 ± 0.62 1h 50m 33s

Ours Serial 88.70 ± 0.43 87.87 ± 0.37 71.65 ± 0.93 64.76 ± 0.70 37m 18s
Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

TABLE VI: We report on the performance obtained on HO-3D with Ours and we compare it to Mask R-CNN (output
layers) and Ours Serial for the analysis in Sec. VI-B.

images and waiting until the end of the data acquisition
process, before starting the training. We hence consider
an additional baseline, Mask R-CNN (store features), in
which, similarly to Mask R-CNN (output layers), we fine-
tune the output layers of the RPN and of the detection and
segmentation branches. In this case, however, we compute
and store the backbone feature maps for each input image
during data acquisition to save time. This can be done
because, during the fine-tuning, the weights of the backbone
remain unaltered.

Both Ours and Mask R-CNN (store features) can
perform the feature extraction while receiving the stream of
images: this allows to further reduce the training time. This
is possible because the frame rate for feature extraction in
both cases is greater than the frame rate of the stream of
incoming data. For instance, with Ours, we extract features
at 14.7 FPS for YCB-Video while the stream of images
that is used for training has a frame rate of 3 FPS (note
that the dataset has been collected at 30 FPS, but we use
one image over ten to avoid data redundancy). This allows
to completely absorb the time for feature extraction in the
time for data acquisition for both approaches. Since the time
required for the data acquisition is the same for the two
compared methods, we remove it from the training time
computation, therefore comparing only the processing time
that follows this phase. This represents the time to wait
for a model to be ready in the target robotic application.
As explained above, the time required for feature extraction
cannot be removed in the case of Mask R-CNN (full) and
Mask R-CNN (output layers).

We present results for this experiment for YCB-Video and
HO-3D in Fig. 6 and in Fig. 7, respectively. Specifically, we
compare the performance of the four considered methods for
increasing training time. For the Mask R-CNN baselines, we
take the accuracy in different moments of the fine-tuning,
while, for Ours, we increase the number of iterations of the
Minibootstrap from 2 to 15. In both Fig. 6 and Fig. 7, we
report in the first row the mAP trends at IoU 50% while in
the second row we report the results for IoU 70%, for both
detection and segmentation.

As it can be noticed, Ours achieves the best accuracy
for short training time. For instance, in the YCB-Video
experiment, if we consider a training time of ∼20s, which is

the necessary training time if we set the minimum number of
Minibootstrap iterations nB=2, Ours achieves a mAP for
instance segmentation of (i) ∼82.2 and (ii) ∼67.9 for the
IoU thresholds set to (i) 50% and (ii) 70%. With a similar
optimization time, the Mask R-CNN baselines perform quite
poorly. For example, Mask R-CNN (full) (which is the best
among the baselines) reaches a mAP of (i) ∼53.9 and (ii)
∼39.8 for the IoU thresholds set to (i) 50% and (ii) 70%.

Moreover, the plots show that, for all the experiments,
Mask R-CNN (output layers) achieves the worst perfor-
mance, while Mask R-CNN (store features) has a steeper
slope. This is due to the fact that this method does not
perform the forward pass of the Mask R-CNN backbone
for feature extraction. On the contrary, Mask R-CNN (full)
presents a better trend than Mask R-CNN (output layers)
and Mask R-CNN (store features). This might be due to the
following reasons. Firstly, Mask R-CNN (full) optimizes
more parameters of the network. While requiring more
time for each training step, this allows to speed-up the
optimization process, requiring less iterations on the dataset
to achieve comparable accuracy. Secondly, Mask R-CNN
(full) performs a warm restart of the the output layers of
the RPN, while in the other baselines they are re-initialized
from scratch. However, to achieve a similar performance to
Ours, Mask R-CNN (full) requires ∼75s for the YCB-
Video experiment and ∼50s on HO-3D.

Finally, as it can be noticed, the standard deviations of
most of the Mask R-CNN baselines are greater than the
ones of Ours. This derives from the fact that while Ours
samples features from all the training images, the Mask R-
CNN baselines are optimized only on a subset of them due
to time constraints (e.g. in the YCB-Video experiment Mask
R-CNN (full) processes images at ∼8.0 FPS when trained
for 1 minute). Reducing the number of training images
increases the variability of the results.

In the video attached as supplementary material to the
manuscript11, we show qualitative results to compare Ours
to Mask R-CNN (full) when trained for the same time.

11https://youtu.be/eLatoDWY4OI

https://youtu.be/eLatoDWY4OI
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Fig. 6: Detection and segmentation mAPs for increasing number of Minibootstrap iterations for Ours and for increasing
training time of the Mask R-CNN baselines, considering YCB-Video as TARGET-TASK. The plots show the average and
the standard deviation of the accuracy obtained over three training sessions with the same parameters.

VIII. ROBOTIC APPLICATION

In this section, we describe the pipeline based on the
proposed method, that we developed for the iCub [5] robot.
We set our application in a teacher-learner scenario, in which
the robot learns to segment novel objects shown by a human.
The proposed application depicts a similar setting to the
experiments on HO-3D showing the effectiveness of the
approach to learn new objects also in presence of domain
shift.

While in the off-line experiments all the input images and
the object instances are fixed beforehand, in the application
this information is not known in advance. New objects may
appear in the scene and, while learning to segment them, the
robot has to keep and integrate the knowledge of the classes
that are already known. We therefore propose a strategy
to process the incoming images and extract corresponding
features such that, for each new class, a detection model
is trained with Ours, integrating the knowledge of old and
new objects. This is done by first training new classifiers
on the new classes, considering also the information from
the objects already known. Then, the classifiers previously
trained on the old classes are updated using features of the
new classes.

The proposed application consists of four main modules

(the blocks depicted in Fig. 8). It allows to train and
update an instance segmentation model by: (i) automatically
collecting ground-truth for instance segmentation with an
interactive pipeline for incoming training images, (ii) ex-
tracting corresponding features and aggregating them such
that the information of old and new objects are integrated
in the Minibootstrap and (iii) updating the On-line RPN,
the On-line Detection Module and the On-line Segmentation
Module. In the next paragraphs, we provide further details
for each of the main blocks.

Human-Robot Interaction (HRI). This block allows the
human to give commands to the robot with a module for
speech recognition (Speech Recognition in Fig. 8), triggering
different states of the system. This allows the user to either
teach the robot a new object, by presenting and rotating it
in front of the camera (train) or to perform inference, i.e.,
to segment objects already known in the scene.

Automatic Data Acquisition. When the state of the system
is set to train, this block extracts a blob of pixels repre-
senting the closest object to the robot [56]. This is used as
ground-truth annotation for the new object that is presented
by the human. This blob is computed by exploiting the depth
information to segment the object from the background
(Automatic GT Extractor). Moreover, in order to enhance the
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Fig. 7: We consider HO-3D as TARGET-TASK and we report the average and the standard deviation of the mAPs over
three training sessions with the same parameters for increasing number of Minibootstrap iterations for Ours, and for
increasing training time of Mask R-CNN (full), Mask R-CNN (output layers) and Mask R-CNN (store features).

background variability in the training images, the extracted
blob is also used by the robot to follow the object with
the gaze (Gaze Controller). To deal with noise in the depth
image, we post-process the masks to ensure spatio-temporal
coherence between consecutive frames. Specifically, we con-
sider as valid ground-truth masks those overlapping over a
certain threshold with the ones of previous and subsequent
frames.

Feature Extraction. It is used to extract the features to
train the three on-line modules. It relies on the ground-
truth masks provided by the Automatic GT Extractor and on
the corresponding image collected by the robot. This block
implements the Feature Extraction Module as described in
Sec. III-A, with some modifications introduced to adapt it
to the interactive setting of the demonstration. We describe
the major differences in Sec. VIII-A.

On-line Segmentation. This block is trained with the pro-
posed approach Ours (see Sec. III-D) relying on the features
extracted by the Feature Extraction block. At inference time,
it predicts objects masks on a given image. To do this,
similarly to Ours, it relies on Mask R-CNN pre-trained
on the MS COCO dataset for feature extraction and on the
proposed on-line modules as described in Sec. III-A.

A. Incremental Instance Segmentation Learning

When a new object has to be learned, the three on-line
modules need to be updated. However, only for the On-line
RPN and the On-line Detection Module specific operations
are required to integrate the knowledge of the old classes
with the new one and to re-train the two modules with the
updated information. Instead, for the On-line Segmentation
Module only the classifier of the novel class must be trained.
This is due to the fact that, for each class, the latter extracts
masks labels from the ground-truth bounding boxes for that
class, while the other modules use all the images in the
dataset (see Sec. III-B and Sec. III-C for details).

To this end, in the following paragraphs we describe
how we adapt the feature extraction procedures for the
On-line RPN and the On-line Detection Module reported
in Sec. III-B such that past and novel classes can be
properly integrated for the training. We refer the reader to
App. D for the probabilistic equivalence between the feature
sampling procedures of the two on-line modules described
in Sec. III-B and the ones presented in this section. Please
note that, for each module, we consider training features
sampled independently from each training image.

For the sake of simplicity, in the following analysis, we
consider a single incremental task scenario where a sequence



IEEE TRANSACTIONS ON ROBOTICS 13

Fig. 8: Overview of the proposed robotic pipeline for on-line instance segmentation. At training time (solid arrows), a
human teacher shows a new object to the robot, which automatically acquires the ground-truth annotations exploiting the
depth information. Then, it extracts the features to train the on-line modules. At inference time (dashed arrows), the robot
employs such modules to predict the masks of the images acquired by the camera.

Fig. 9: Predictions on test images from the incremental application deployed on the iCub.

Fig. 10: Dealing with False Positives. Left image: an unknown object (a glass) is misclassified (as a masterchef ). Center:
training. The robot is provided with the correct label and a demonstration of the object. Right: after training the new object
is correctly classified.

of images representing an instance of a new class is shown
to the robot, which is required to learn the new object at the
end of the demonstration. Specifically, the robot has already
been trained on N−1 classes and must learn the N th object.
However, Alg. 2 and Alg. 3 describe in detail the general
procedures, which are suitable also if multiple objects must
be learned simultaneously. Once the training features for
these two modules have been computed with the described
approaches, they can be trained with the same procedure
described in Sec. III-B, namely with the steps 2 and 3 of
the Minibootstrap procedure (see App. E).

Positive samples for the N th object, as defined in
Sec. III-B for FALKON classifiers and RLS regressors in
the On-line RPN and in the On-line Detection Module, are
taken from the current image stream and are not affected
by previous sequences. Therefore, we stick to the method
described in Sec. III-B for their extraction. Instead, for the
computation of the negative features we design two different
procedures that we describe in the following paragraphs.
On-line RPN. When learning the N th class, we first collect

features for On-line RPN training for that class. We do this
by extracting convolutional features from the images of the
associated sequence and sub-sample them as described in
Sec. III-B. Then, we need to integrate the extracted features
with those from the previous N −1 classes for each anchor,
such that (i) the number and size of Minibootstrap batches
are kept fixed and (ii) the number of negative samples per-
image is kept balanced. To this end, we randomly remove
a fraction of the samples collected for the Minibootstrap
batches of the previous N − 1 classes and substitute them
with those for the N th class. More details about this
procedure can be found in App. F.
On-line Detection. Similarly to what is done for the On-line
RPN, when the N th class arrives, we extract convolutional
features from the images of the associated sequence and sub-
sample them as described in Sec. III-B. Then, the extracted
features have to be integrated with those from the previous
N − 1 classes. This is done in a twofold way: (i) we
create the N th dataset to train a classifier for the new
object integrating the extracted features with a subset of the
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previous N−1 ones and (ii) we update the N−1 datasets for
training the previous classes with features from the N th. As
for the On-line RPN, the number and size of Minibootstrap
batches are kept fixed and we balance the number of per-
image negative samples. More details about this procedure
can be found in App. G.

B. Discussion and Qualitative Results

We design the incremental feature extraction procedures
for the On-line RPN and the On-line Detection Module to be
analogous to the ones used in the off-line experiments (batch
procedures), such that, training the on-line modules with
Minibootstrap batches obtained with the former, provides
comparable models to the ones obtained with the batch
procedures (and therefore, comparable accuracy). This is
due to the fact that a set of negative samples has the
same probability to end up in the Minibootstrap batches
of a classifier (either of the On-line RPN or of the On-
line Detection Module), either using the batch pipelines
as described in Sec. III-B or the incremental procedures
presented in the previous section. This is demonstrated in
App. D. Specifically, we demonstrate that the per-image
negative selection probabilities with the two procedures are
equivalent, because each image is considered independently
in both cases. This proves their equivalence.

We qualitatively show the effectiveness of the incremental
pipeline by deploying it on the iCub robot. We train ten
object instances and we report the results of the inference
on some exemplar frames in Fig. 9. A video of the complete
demonstration, comprising the training of all the considered
objects and the inference of the trained models, is attached
as supplementary material to the manuscript11. In Fig. 10,
we show how the proposed incremental approach allows to
deal with false positive predictions. Key to achieve this is
the re-training of the N − 1 classifiers for previous classes
when the N th object arrives. Indeed, integrating data from
the N th object when updating the previous N −1 allows to
strongly reduce the amount of false predictions at inference
time.

IX. CONCLUSIONS
The ability of rapidly adapting their visual system to novel

tasks is an important requirement for robots operating in
dynamic environments. While state-of-the art approaches
for visual tasks mainly focus on boosting performance, a
relatively small amount of methods are designed to reduce
training time. In this perspective, we presented a novel
pipeline for fast training of the instance segmentation task.
The proposed approach allows to quickly learn to segment
novel objects also in presence of domain shifts. We designed
a two-stage hybrid pipeline to operate in the typical robotic
scenario where streams of data are acquired by the camera
of the robot. Indeed, our pipeline allows to shorten the total
training time by extracting a set of convolutional features
during the data acquisition and to use them in a second step
to rapidly train a set of Kernel-based classifiers.

We benchmarked our results on two robotics datasets,
namely YCB-Video and HO-3D. On these datasets, we
provided an extensive empirical evaluation of the proposed
approach to evaluate different training time/accuracy trade-
offs, comparing results against previous work [1] and several
Mask R-CNN baselines.

Finally, we demonstrated the application of this work on
a real humanoid robot. At this aim, we adapted the fast
training pipeline for incremental region proposal adaptation
and instance segmentation, showing that the robot is able
to learn new objects following a short interactive training
session with a human teacher.

APPENDIX A

In Tab. VII and in Tab. VIII, we overview the training
protocols and the acronyms for mAP evaluation used in this
work.

APPENDIX B

In this appendix, we report the sequences considered in
the experiments on the HO-3D dataset.
• Training sequences: ABF10, ABF11, ABF12, ABF13,

BB10, BB11, BB12, BB13, GPMF10, GPMF11,
GPMF12, GPMF13, GSF10, GSF11, GSF12, GSF13,
MC1, MC2, MC4, MC5, MDF10, MDF11, MDF12,
MDF13, ShSu10, ShSu12, ShSu13, ShSu14, SM2, SM3,
SM4, SMu1, SMu40, SMu41.

• Validation sequences: ABF13, BB13, GPMF13,
GSF13, MC5, MDF13, ShSu14, SM4, SMu41.

• Test sequences: ABF14, BB14, GPMF14, GSF14,
MC6, MDF14, SiS1, SM5, SMu42.

APPENDIX C

In the stream-based scenario, data is used as soon as it is
received (Sec. VII). In this case, the Mask R-CNN baselines
can be trained only for one epoch and their weights can
be updated only when a new image is received. Therefore,
we compare the performance achieved by Ours against the
Mask R-CNN baselines, training Mask R-CNN (output
layers) and Mask R-CNN (full) for one epoch and without
shuffling the input images.

Result are reported in Tab. IX for YCB-Video and in
Tab. X for HO-3D. As it can be noticed, while training
the Mask R-CNN baselines for just one epoch allows to
achieve a performance similar to the one provided in the
benchmarks (Sec. V), shuffling the input images turns out
to be crucial. Indeed, in both cases, the accuracy provided by
the Mask R-CNN baselines drops when the input images are
not shuffled, while Ours is not affected by this constraint.
Moreover, shuffling is particularly critical for the Mask
R-CNN baselines on the HO-3D dataset because training
objects are shown subsequently, one by one, as in the target
teacher-learner setting (Sec. VIII). Therefore, in the stream-
based scenario, such baselines cannot be trained in practice.
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Method Training Protocol Section

Ours
This is the proposed approach. It is composed of two steps. One for feature extraction and one
for simultaneous on-line training of the proposed methods for region proposal, object detection and
mask prediction.

III-C

Ours Serial
It is composed of the same modules as Ours, but it differs on the training protocol. This is composed
of two steps for feature extraction, one for the on-line training of the proposed method for region
proposal and one to train the modules for on-line detection and segmentation.

VI-B

O-OS This is the approach proposed in [1]. It is composed of two steps. One for feature extraction and
one for on-line training of the modules for object detection and mask prediction. VI-A

Mask R-CNN (full) This protocol relies on Mask R-CNN pre-trained on the FEATURE-TASK as a warm-restart to train
Mask R-CNN on the TARGET-TASK. IV-A

Mask R-CNN (output layers) Starting from the Mask R-CNN weights pre-trained on the FEATURE-TASK, it fine-tunes the output
layers of the RPN and of the detection and segmentation branches on the TARGET-TASK. IV-A

Mask R-CNN (store features)
Similarly to Mask R-CNN (output layers), it fine-tunes the output layers of the RPN and of the
detection and segmentation branches. However, since the weights of the backbone remain unaltered,
it computes and stores the backbone feature maps for each input image during data acquisition.

VII

TABLE VII: Training protocols overview.

Intersection over Union (IoU)
with ground-truth Object Detection Instance Segmentation

50% mAP50 bbox(%) mAP50 segm(%)
70% mAP70 bbox(%) mAP70 segm(%)

TABLE VIII: Object detection and segmentation metrics taxonomy.

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time

1 Epoch Mask R-CNN (full) 89.21 ± 0.77 90.75 ± 0.80 83.27 ± 0.54 78.83 ± 1.70 35m 8s
Mask R-CNN (output layers) 82.78 ± 0.50 79.38 ± 0.40 75.04 ± 0.97 68.42 ± 0.55 26m 48s

1 Epoch
No Shuffling

Mask R-CNN (full) 46.29 ± 1.26 43.93 ± 0.84 28.66 ± 1.89 32.83 ± 1.37 33m 41s
Mask R-CNN (output layers) 69.63 ± 0.48 66.03 ± 0.68 38.48 ± 2.88 54.70 ± 0.46 26m 39s

Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

TABLE IX: Comparison between the training of Ours and the Mask R-CNN baselines trained for one epoch and for one
epoch without shuffling the input images, considering YCB-Video as TARGET-TASK.

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time

1 Epoch Mask R-CNN (full) 92.21 ± 0.88 90.70 ± 0.17 86.73 ± 0.71 77.25 ± 0.62 38m 38s
Mask R-CNN (output layers) 86.77 ± 0.68 85.45 ± 0.64 70.57 ± 0.41 63.57 ± 0.43 17m 53s

1 Epoch
No Shuffling

Mask R-CNN (full) 6.72 ± 2.35 6.53 ± 2.33 6.24 ± 2.21 6.01 ± 2.18 37m 30s
Mask R-CNN (output layers) 19.28 ± 2.33 21.01 ± 0.75 11.03 ± 1.70 16.74 ± 1.26 17m 52s

Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

TABLE X: Comparison between the training of Ours and the Mask R-CNN baselines trained for one epoch and for one
epoch without shuffling the input images, considering HO-3D as TARGET-TASK.

APPENDIX D

In this appendix, we prove the probabilistic equivalence
of the two sampling procedures which are used in the
Minibootstrap and in the incremental feature extraction
pipelines for both the On-line RPN and for the On-line
Detection Module.

We consider a pool of tensors S0 and a set of tensors
Ŝ ⊆ S0. We compute the probability of sampling Ŝ from
S0 with the two following procedures:

• We sample |Ŝ| tensors from S0. We refer to the
probability that the sampled tensors are equal to Ŝ as
P (Ŝ ∼ S0).

• We recursively sample m sets from S0 and we obtain
the pools S1, .., Sm such that |S0| ≥ |S1| ≥ ... ≥
|Sm| ≥ |Ŝ|. Namely, for each Si, with i in 0, ...,m−1,
Si+1 is a random sample of size |Si+1| of Si. Finally,
we sample |Ŝ| tensors from Sm. We refer to the
probability that the sampled tensors are equal to Ŝ as
P (Ŝ ∼ Sm).

We note that, for the On-line RPN and for the On-line
Detection Module, the pool of tensors S0 represents the
whole set of features associated to an image. S1, .., Sm,
instead, represent consecutive sub-samples of S0 in the in-
cremental feature extraction pipelines. Finally, Ŝ correspond
to the final per-image set of features chosen for training the
on-line modules either with the Minibootstrap (as presented
in III-B) or with the incremental pipelines.

We prove that P (Ŝ ∼ S0) is equal to P (Ŝ ∼ Sm).

Proof. P (Ŝ ∼ S0) can be computed as follows:

P (Ŝ ∼ S0) =
1(|S0|
|Ŝ|

) (1)

Instead, due to the law of total probability, we can decom-
pose P (Ŝ ∼ Sm) as follows (note that if Ŝ is not a subset
of Sm, P (Ŝ ∼ Sm|Ŝ 6⊆ Sm) = 0):

P (Ŝ ∼ Sm) = P (Ŝ ∼ Sm|Ŝ ⊆ Sm)× P (Ŝ ⊆ Sm) (2)
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Again, due to the law of total probability, we can decompose
P (Ŝ ⊆ Sm) from equation 2 as follows (note that, for each
i in 0, ...,m− 1, P (Ŝ ⊆ Si|Ŝ 6⊆ Si−1) = 0):

P (Ŝ ⊆ Sm) = P (Ŝ ⊆ Sm|Ŝ ⊆ Sm−1)× P (Ŝ ⊆ Sm−1)

=

1∏
k=m

P (Ŝ ⊆ Sk|Ŝ ⊆ Sk−1)× P (Ŝ ⊆ S0)

(3)

Note that P (Ŝ ⊆ S0) = 1 by definition (i.e., Ŝ is always in
S0). Therefore:

P (Ŝ ⊆ Sm) =

1∏
k=m

P (Ŝ ⊆ Sk|Ŝ ⊆ Sk−1) (4)

We note that
(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
is the total number of feasible

samples s.t. Ŝ ⊆ Sk given that Ŝ ⊆ Sk−1. Namely, we fix Ŝ
in Sk and we compute the number of possible combinations
of the remaining |Sk|−|Ŝ| tensors that can be in Sk sampled
from the remaining pool of size |Sk−1| − |Ŝ|. Therefore:

P (Ŝ ⊆ Sk|Ŝ ⊆ Sk−1) =

(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
(|Sk−1|
|Sk|

) (5)

We can decompose the component in the product as follows:

(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
(|Sk−1|
|Sk|

) =
(|Sk−1| − |Ŝ|)!
(|Sk| − |Ŝ|)!

× |Sk|!
|Sk−1|!

(6)

Note that, for each of these elements with k 6= 1 and k 6= m,
if we multiply it by the element at k−1 and by the element
at k + 1, all the elements are simplified. Therefore, we can
rewrite P (Ŝ ∼ Sm) from equation 2 as:

P (Ŝ ∼ Sm) = P (Ŝ ∼ Sm|Ŝ ⊆ Sm)× P (Ŝ ⊆ Sm)

=
1(|Sm|
|Ŝ|

) × 1∏
k=m

(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
(|Sk−1|
|Sk|

)
=

(|Sm| − |Ŝ|)!× |Ŝ|!
|Sm|!

× |Sm|!× (|S0| − |Ŝ|)!
(|Sm| − |Ŝ|)!× S0!

=
|Ŝ|!× (|S0| − |Ŝ|)!

|S0|!

=
1(|S0|
|Ŝ|

)
(7)

This concludes our proof, since:

P (Ŝ ∼ S0) = P (Ŝ ∼ Sm) (8)

APPENDIX E
In Alg. 1, we report the pseudo-code of the Miniboot-

strap [48] procedure. Note that, we use the Sample(Set,
Sample size) function to extract Sample size random tensors
from the given Set. We will use this function also in Alg. 2
and Alg. 3.

APPENDIX F
We report the pseudo-code for the incremental feature

extraction pipeline for the On-line RPN. Since the procedure
is equal for all the considered anchors, in Alg. 2 we report
the algorithm for a generic anchor a.

APPENDIX G
In Alg. 3, we report the pseudo-code for the incremental

feature extraction pipeline for the On-line Detection Module.
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Algorithm 3 Incremental On-line Detection Incremental feature extraction pseudo-code for the On-line Detection Module.

Input: BS, nB : size and number of the Minibootstrap batches
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It: tth sequence of training images
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Output: Post, Negt: N t sets of positive and negative training features at iteration t
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i=0 ∅ . Compute Post from Post−1 adding an empty set for each new class
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if It[i] has positives of class n PosIt[i],n then
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end for
Stage 3: Fill negative batches
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Negt[n]← ∅
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if (ImgNeg[n][i] 6= ∅) then . If any, add to the negatives of class n, per-image negatives for class n
Negt[n]← Negt[n]

⋃
ImgtNeg[n][i]

else . Otherwise, add to the negatives of class n, per-image buffer negatives
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end for

end for
Return Post, Negt . Return positive and negative features at iteration t
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Figure 1. Planar factorization of d-dimensional spaces. We propose a simple planar factorization for volumetric rendering that naturally
extends to arbitrary-dimensional spaces, and that scales gracefully with dimension in both optimization time and model size. We show the
advantages of our approach on 3D static volumes, 3D photo collections with varying appearances, and 4D dynamic videos.

Abstract

We introduce k-planes, a white-box model for radiance
fields in arbitrary dimensions. Our model uses

(
d
2

)
(“d-

choose-2”) planes to represent a d-dimensional scene, pro-
viding a seamless way to go from static (d = 3) to dynamic
(d = 4) scenes. This planar factorization makes adding
dimension-specific priors easy, e.g. temporal smoothness
and multi-resolution spatial structure, and induces a nat-
ural decomposition of static and dynamic components of a
scene. We use a linear feature decoder with a learned color
basis that yields similar performance as a nonlinear black-
box MLP decoder. Across a range of synthetic and real,
static and dynamic, fixed and varying appearance scenes,
k-planes yields competitive and often state-of-the-art recon-
struction fidelity with low memory usage, achieving 1000x
compression over a full 4D grid, and fast optimization with
a pure PyTorch implementation. For video results and code,
please see https://sarafridov.github.io/K-
Planes.

* equal contribution

1. Introduction
Recent interest in dynamic radiance fields demands rep-

resentations of 4D volumes. However, storing a 4D vol-
ume directly is prohibitively expensive due to the curse of
dimensionality. Several approaches have been proposed to
factorize 3D volumes for static radiance fields, but these do
not easily extend to higher dimensional volumes.

We propose a factorization of 4D volumes that is simple,
interpretable, compact, and yields fast training and render-
ing. Specifically, we use six planes to represent a 4D vol-
ume, where the first three represent space and the last three
represent space-time changes, as illustrated in Fig. 1(d).
This decomposition of space and space-time makes our
model interpretable, i.e. dynamic objects are clearly visible
in the space-time planes, whereas static objects only appear
in the space planes. This interpretability enables dimension-
specific priors in time and space.

More generally, our approach yields a straightforward,
prescriptive way to select a factorization of any dimension
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with 2D planes. For a d-dimensional space, we use k =
(
d
2

)
(“d-choose-2”) k-planes, which represent every pair of di-
mensions — for example, our model uses

(
4
2

)
= 6 hex-

planes in 4D and reduces to
(
3
2

)
= 3 tri-planes in 3D.

Choosing any other set of planes would entail either using
more than k planes and thus occupying unnecessary mem-
ory, or using fewer planes and thereby forfeiting the ability
to represent some potential interaction between two of the
d dimensions. We call our model k-planes; Fig. 1 illustrates
its natural application to both static and dynamic scenes.

Most radiance field models entail some black-box com-
ponents with their use of MLPs. Instead, we seek a simple
model whose functioning can be inspected and understood.
We find two design choices to be fundamental in allowing
k-planes to be a white-box model while maintaining recon-
struction quality competitive with or better than previous
black-box models [16, 30]: (1) Features from our k-planes
are multiplied together rather than added, as was done in
prior work [5, 6], and (2) our linear feature decoder uses
a learned basis for view-dependent color, enabling greater
adaptivity including the ability to model scenes with vari-
able appearance. We show that an MLP decoder can be re-
placed with this linear feature decoder only when the planes
are multiplied, suggesting that the former is involved in both
view-dependent color and determining spatial structure.

Our factorization of 4D volumes into 2D planes leads to
a high compression level without relying on MLPs, using
200 MB to represent a 4D volume whose direct represen-
tation at the same resolution would require more than 300
GB, a compression rate of three orders of magnitude. Fur-
thermore, despite not using any custom CUDA kernels, k-
planes trains orders of magnitude faster than prior implicit
models and on par with concurrent hybrid models.

In summary, we present the first white-box, interpretable
model capable of representing radiance fields in arbi-
trary dimensions, including static scenes, dynamic scenes,
and scenes with variable appearance. Our k-planes model
achieves competitive performance across reconstruction
quality, model size, and optimization time across these var-
ied tasks, without any custom CUDA kernels.

2. Related Work

K-planes is an interpretable, explicit model applicable
to static scenes, scenes with varying appearances, and dy-
namic scenes, with compact model size and fast optimiza-
tion time. Our model is the first to yield all of these at-
tributes, as illustrated in Tab. 1. We further highlight that
k-planes satisfies this in a simple framework that naturally
extends to arbitrary dimensions.

Spatial decomposition. NeRF [24] proposed a fully im-
plicit model with a large neural network queried many times
during optimization, making it slow and essentially a black-
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NeRF ✓ ✗ ✗ ✗ ✓ ✗
NeRF-W ✓ ✓ ✗ ✗ ✓ ✗
DVGO ✓ ✗ ✗ ✓ ✗ ✗
Plenoxels ✓ ✗ ✗ ✓ ✗ ✓
Instant-NGP, TensoRF ✓ ✗ ✗ ✓ ✓ ✗1

DyNeRF, D-NeRF – ✗ ✓ ✗ ✓ ✗
TiNeuVox, Tensor4D – ✗ ✓ ✓ ✓ ✗
MixVoxels, V4D – ✗ ✓ ✓ ✗ ✗
NeRFPlayer – ✗ ✓ ✓ ✓2 ✗

K-planes hybrid (Ours) ✓ ✓ ✓ ✓ ✓ ✗
K-planes explicit (Ours) ✓ ✓ ✓ ✓ ✓ ✓

1 TensoRF offers both hybrid and explicit versions, with a small quality
gap 2 NerfPlayer offers models at different sizes, the smallest of which
has < 100 million parameters but the largest of which has > 300 million
parameters

Table 1. Related work overview. The k-planes model works for a
diverse set of scenes and tasks (static, varying appearance, and dy-
namic). It has a low memory usage (compact) and fast training and
inference time (fast). Here “fast” includes any model that can op-
timize within a few (< 6) hours on a single GPU, and “compact”
denotes models that use less than roughly 100 million parameters.
“Explicit” denotes white-box models that do not rely on MLPs.

box. Several works have used geometric representations to
reduce the optimization time. Plenoxels [10] proposed a
fully explicit model with trilinear interpolation in a 3D grid,
which reduced the optimization time from hours to a few
minutes. However, their explicit grid representation of 3D
volumes, and that of DVGO [33], grows exponentially with
dimension, making it challenging to scale to high resolution
and completely intractable for 4D dynamic volumes.

Hybrid methods [6, 25, 33] retain some explicit geomet-
ric structure, often compressed by a spatial decomposition,
alongside a small MLP feature decoder. Instant-NGP [25]
proposed a multiresolution voxel grid encoded implicitly
via a hash function, allowing fast optimization and render-
ing with a compact model. TensoRF [6] achieved similar
model compression and speed by replacing the voxel grid
with a tensor decomposition into planes and vectors. In a
generative setting, EG3D [5] proposed a similar spatial de-
composition into three planes, whose values are added to-
gether to represent a 3D volume.

Our work is inspired by the explicit modeling of Plenox-
els as well as these spatial decompositions, particularly the
triplane model of [5], the tensor decomposition of [6], and
the multiscale grid model of [25]. We also draw inspira-
tion from Extreme MRI [26], which uses a multiscale low-
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Figure 2. Method overview. (a) Our k-planes representation factorizes 4D dynamic volumes into six planes, three for space and three for
spatiotemporal variations. To obtain the value of a 4D point q = (x, y, z, t), we first project the point into each plane, in which we (b) do
multiscale bilinear interpolation. (c) The interpolated values are multiplied and then concatenated over the S scales. (d) These features are
decoded either with a small MLP or our explicit linear decoder. (e) We follow the standard volumetric rendering formula to predict ray
color and density. The model is optimized by (f) minimizing the reconstruction loss with simple regularization in space and time.

rank decomposition to represent 4D dynamic volumes in
magnetic resonance imaging. These spatial decomposition
methods have been shown to offer a favorable balance of
memory efficiency and optimization time for static scenes.
However, it is not obvious how to extend these factoriza-
tions to 4D volumes in a memory-efficient way. K-planes
defines a unified framework that enables efficient and inter-
pretable factorizations of 3D and 4D volumes and trivially
extends to even higher dimensional volumes.

Dynamic volumes. Applications such as Virtual Reality
(VR) and Computed Tomography (CT) often require the
ability to reconstruct 4D volumes. Several works have pro-
posed extensions of NeRF to dynamic scenes. The two most
common schemes are (1) modeling a deformation field on
top of a static canonical field [8, 9, 17, 27, 30, 36, 43], or
(2) directly learning a radiance field conditioned on time
[12, 16, 17, 28, 41]. The former makes decomposing static
and dynamic components easy [40, 43], but struggles with
changes in scene topology (e.g. when a new object appears),
while the latter makes disentangling static and dynamic ob-
jects hard. A third strategy is to choose a representation of
3D space and repeat it at each timestep (e.g. NeRFPlayer
[32]), resulting in a model that ignores space-time interac-
tions and can become impractically large for long videos.

Further, some of these models are fully implicit [16, 30]
and thus suffer from extremely long training times (e.g.
DyNeRF used 8 GPUs for 1 week to train a single scene), as
well as being completely black-box. Others use partially ex-
plicit decompositions for video [9,11,14,18,19,31,32,37],
usually combining some voxel or spatially decomposed fea-
ture grid with one or more MLP components for feature de-
coding and/or representing scene dynamics. Most closely
related to k-planes is Tensor4D [31], which uses 9 planes
to decompose 4D volumes. K-planes is less redundant (e.g.
Tensor4D includes two yt planes), does not rely on multi-

ple MLPs, and offers a simpler factorization that naturally
generalizes to static and dynamic scenes. Our method com-
bines a fully explicit representation with a built-in decom-
position of static and dynamic components, the ability to
handle arbitrary topology and lighting changes over time,
fast optimization, and compactness.
Appearance embedding. Reconstructing large environ-
ments from photographs taken with varying illumination is
another domain in which implicit methods have shown ap-
pealing results, but hybrid and explicit approaches have not
yet gained a foothold. NeRF-W [20] was the first to demon-
strate photorealistic view synthesis in such environments.
They augment a NeRF-based model with a learned global
appearance code per frame, enabling it to explain away
changes in appearance, such as time of day. With Generative
Latent Optimization (GLO) [4], these appearance codes can
further be used to manipulate the scene appearance by inter-
polation in the latent appearance space. Block-NeRF [34]
employs similar appearance codes.

We show that our k-planes representation can also effec-
tively reconstruct these unbounded environments with vary-
ing appearance. We similarly extend our model – either the
learned color basis in the fully explicit version, or the MLP
decoder in the hybrid version – with a global appearance
code to disentangle global appearance from a scene with-
out affecting geometry. To the best of our knowledge, ours
is both the first fully explicit and the first hybrid method to
successfully reconstruct these challenging scenes.

3. K-planes model
We propose a simple and interpretable model for repre-

senting scenes in arbitrary dimensions. Our representation
yields low memory usage and fast training and rendering.
The k-planes factorization, illustrated in Fig. 2, models a d-
dimensional scene using k =

(
d
2

)
planes representing every
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combination of two dimensions. For example, for static 3D
scenes, this results in tri-planes with

(
3
2

)
= 3 planes rep-

resenting xy, xz, and yz. For dynamic 4D scenes, this re-
sults in hex-planes, with

(
4
2

)
= 6 planes including the three

space-only planes and three space-time planes xt, yt, and
zt. Should we wish to represent a 5D space, we could use(
5
2

)
= 10 deca-planes. In the following section, we describe

the 4D instantiation of our k-planes factorization.

3.1. Hex-planes

The hex-planes factorization uses six planes. We refer to
the space-only planes as Pxy , Pxz , and Pyz , and the space-
time planes as Pxt, Pyt, and Pzt. Assuming symmetric spa-
tial and temporal resolution N for simplicity of illustration,
each of these planes has shape NxNxM , where M is the
size of stored features that capture the density and view-
dependent color of the scene.

We obtain the features of a 4D coordinate q = (i, j, k, τ)
by normalizing its entries between [0, N) and projecting it
onto these six planes

f(q)c = ψ
(
Pc, πc(q)

)
, (1)

where πc projects q onto the c’th plane and ψ denotes bi-
linear interpolation of a point into a regularly spaced 2D
grid. We repeat Eq. (1) for each plane c ∈ C to obtain fea-
ture vectors f(q)c. We combine these features over the six
planes using the Hadamard product (elementwise multipli-
cation) to produce a final feature vector of length M

f(q) =
∏
c∈C

f(q)c. (2)

These features will be decoded into color and density using
either a linear decoder or an MLP, described in Sec. 3.3.
Why Hadamard product? In 3D, k-planes reduces to the
tri-plane factorization, which is similar to [5] except that
the elements are multiplied. A natural question is why we
multiply rather than add, as has been used in prior work with
tri-plane models [5, 29]. Fig. 3 illustrates that combining
the planes by multiplication allows k-planes to produce spa-
tially localized signals, which is not possible with addition.

This selection ability of the Hadamard product produces
substantial rendering improvements for linear decoders and
modest improvement for MLP decoders, as shown in Tab. 2.
This suggests that the MLP decoder is involved in both
view-dependent color and determining spatial structure.
The Hadamard product relieves the feature decoder of this
extra task and makes it possible to reach similar perfor-
mance using a linear decoder solely responsible for view-
dependent color.

3.2. Interpretability

The separation of space-only and space-time planes
makes the model interpretable and enables us to incorpo-

Figure 3. Addition versus Hadamard product. Elementwise ad-
dition of plane features (left) compared to multiplication (right),
in a triplane example. A single entry in each plane is positive and
the rest are zero, selecting a single 3D point by multiplication but
producing intersecting lines by addition. This selection ability of
multiplication improves the expressivity of our explicit model.

Plane Combination Explicit Hybrid # params ↓
Multiplication 35.29 35.75 33M

Addition 28.78 34.80 33M

Table 2. Ablation study over Hadamard product. Multiplication
of plane features yields a large improvement in PSNR ↑ for our
explicit model, whereas our hybrid model can use its MLP decoder
to partially compensate for the less expressive addition of planes.
This experiment uses the static Lego scene [24] with 3 scales: 128,
256, and 512, and 32 features per scale.

rate dimension-specific priors. For example, if a region of
the scene never moves, its temporal component will always
be 1 (the multiplicative identity), thereby just using the fea-
tures from the space planes. This offers compression ben-
efits since a static region can easily be identified and com-
pactly represented. Furthermore, the space-time separation
improves interpretability, i.e. we can track the changes in
time by visualizing the elements in the time-space planes
that are not 1. This simplicity, separation, and interpretabil-
ity make adding priors straightforward.

Multiscale planes. To encourage spatial smoothness and
coherence, our model contains multiple copies at differ-
ent spatial resolutions, for example 64, 128, 256, and 512.
Models at each scale are treated separately, and the M -
dimensional feature vectors from different scales are con-
catenated together before being passed to the decoder. The
red and blue squares in Fig. 2a-b illustrate bilinear inter-
polation with multiscale planes. Inspired by the multiscale
hash mapping of Instant-NGP [25], this representation effi-
ciently encodes spatial features at different scales, allowing
us to reduce the number of features stored at the highest
resolution and thereby further compressing our model. Em-
pirically, we do not find it necessary to represent our time
dimension at multiple scales.

Total variation in space. Spatial total variation regu-
larization encourages sparse gradients (with L1 norm) or
smooth gradients (with L2 norm), encoding priors over
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edges being either sparse or smooth in space. We encour-
age this in 1D over the spatial dimensions of each of our
space-time planes and in 2D over our space-only planes:

LTV (P) =
1

|C|n2
∑
c,i,j

(
∥Pi,j

c −Pi−1,j
c ∥22+∥Pi,j

c −Pi,j−1
c ∥22

)
,

(3)
where i, j are indices on the plane’s resolution. Total vari-
ation is a common regularizer in inverse problems and was
used in Plenoxels [10] and TensoRF [6]. We use the L2 ver-
sion in our results, though we find that either L2 or L1 pro-
duces similar quality.

Smoothness in time. We encourage smooth motion with
a 1D Laplacian (second derivative) filter

Lsmooth(P) =
1

|C|n2
∑
c,i,t

∥Pi,t−1
c − 2Pi,t

c + Pi,t+1
c ∥22, (4)

to penalize sharp “acceleration” over time. We only apply
this regularizer on the time dimension of our space-time
planes. Please see the appendix for an ablation study.

Sparse transients. We want the static part of the scene
to be modeled by the space-only planes. We encourage this
separation of space and time by initializing the features in
the space-time planes as 1 (the multiplicative identity) and
using an ℓ1 regularizer on these planes during training:

Lsep(P) =
∑
c

∥1− Pc∥1, c ∈ {xt, yt, zt}. (5)

In this way, the space-time plane features of the k-planes
decomposition will remain fixed at 1 if the corresponding
spatial content does not change over time.

3.3. Feature decoders

We offer two methods to decode the M -dimensional
temporally- and spatially-localized feature vector f(q)
from Eq. (2) into density, σ, and view-dependent color, c.

Learned color basis: a linear decoder and explicit model.
Plenoxels [10], Plenoctrees [42], and TensoRF [6] proposed
models where spatially-localized features are used as coef-
ficients of the spherical harmonic (SH) basis, to describe
view-dependent color. Such SH decoders can give both
high-fidelity reconstructions and enhanced interpretability
compared to MLP decoders. However, SH coefficients are
difficult to optimize, and their expressivity is limited by the
number of SH basis functions used (often limited 2nd de-
gree harmonics, which produce blurry specular reflections).

Instead, we replace the SH functions with a learned ba-
sis, retaining the interpretability of treating features as coef-
ficients for a linear decoder yet increasing the expressivity
of the basis and allowing it to adapt to each scene, as was
proposed in NeX [39]. We represent the basis using a small

MLP that maps each view direction d to red bR(d) ∈ RM ,
green bG(d) ∈ RM , and blue bB(d) ∈ RM basis vectors.
The MLP serves as an adaptive drop-in replacement for the
spherical harmonic basis functions repeated over the three
color channels. We obtain the color values

c(q,d) =
⋃

i∈{R,G,B}

f(q) · bi(d), (6)

where · denotes the dot product and ∪ denotes concatena-
tion. Similarly, we use a learned basis bσ ∈ RM , indepen-
dent of the view direction, as a linear decoder for density:

σ(q) = f(q) · bσ. (7)

Predicted color and density values are finally forced to be
in their valid range by applying the sigmoid to c(q,d), and
the exponential (with truncated gradient) to σ(q).

MLP decoder: a hybrid model. Our model can also be
used with an MLP decoder like that of Instant-NGP [25]
and DVGO [33], turning it into a hybrid model. In this ver-
sion, features are decoded by two small MLPs, one gσ that
maps the spatially-localized features into density σ and ad-
ditional features f̂ , and another gRGB that maps f̂ and the
embedded view direction γ(d) into RGB color

σ(q), f̂(q) = gσ(f(q))

c(q,d) = gRGB(f̂(q), γ(d)).
(8)

As in the linear decoder case, the predicted density and
color values are finally normalized via exponential and sig-
moid, respectively.

Global appearance. We also show a simple extension of
our k-planes model that enables it to represent scenes with
consistent, static geometry viewed under varying lighting
or appearance conditions. Such scenes appear in the Pho-
totourism [15] dataset of famous landmarks photographed
at different times of day and in different weather. To model
this variable appearance, we augment k-planes with an M -
dimensional vector for each training image 1, . . . , T . Sim-
ilar to NeRF-W [20], we optimize this per-image feature
vector and pass it as an additional input to either the MLP
learned color basis bR, bG, bB , in our explicit version, or to
the MLP color decoder gRGB , in our hybrid version, so that
it can affect color but not geometry.

3.4. Optimization details

Contraction and normalized device coordinates. For
forward-facing scenes, we apply normalized device coor-
dinates (NDC) [24] to better allocate our resolution while
enabling unbounded depth. We also implement an ℓ∞ ver-
sion (rather than ℓ2) of the scene contraction proposed in
Mip-NeRF 360 [2], which we use on the unbounded Photo-
tourism scenes.
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(a) Ours-explicit (b) Ours-hybrid (c) TensoRF (d) Ground truth

Figure 4. Zoomed qualitative results on static NeRF scenes. Vi-
sual comparison of k-planes, TensoRF [6], and the ground truth,
on ship (top) and hotdog (bottom).

Proposal sampling. We use a variant of the proposal
sampling strategy from Mip-NeRF 360 [2], with a small
instance of k-planes as density model. Proposal sampling
works by iteratively refining density estimates along a ray,
to allocate more points in the regions of higher density. We
use a two-stage sampler, resulting in fewer samples that
must be evaluated in the full model and in sharper details
by placing those samples closer to object surfaces. The
density models used for proposal sampling are trained with
the histogram loss [2].

Importance sampling. For multiview dynamic scenes,
we implement a version of the importance sampling based
on temporal difference (IST) strategy from DyNeRF [16].
During the last portion of optimization, we sample training
rays proportionally to the maximum variation in their color
within 25 frames before or after. This results in higher
sampling probabilities in the dynamic region. We apply this
strategy after the static scene has converged with uniformly
sampled rays. In our experiments, IST has only a modest
impact on full-frame metrics but improves visual quality in
the small dynamic region. Note that importance sampling
cannot be used for monocular videos or datasets with
moving cameras.

4. Results
We demonstrate the broad applicability of our planar

decomposition via experiments in three domains: static
scenes (both bounded 360◦ and unbounded forward-facing),
dynamic scenes (forward-facing multi-view and bounded
360◦ monocular), and Phototourism scenes with variable
appearance. For all experiments, we report the metrics
PSNR (pixel-level similarity) and SSIM1 [38] (structural
similarity), as well as approximate training time and number
of parameters (in millions), in Tab. 3. Blank entries in Tab. 3
denote baseline methods for which the corresponding infor-

1Note that among prior work, some evaluate using an implementation
of SSIM from MipNeRF [1] whereas others use the scikit-image imple-
mentation, which tends to produce higher values. For fair comparison on
each dataset we make a best effort to use the same SSIM implementation
as the relevant prior work.

(a) Ours-explicit (b) Ours-hybrid (c) TensoRF (d) Ground truth

Figure 5. Zoomed qualitative results on static LLFF scenes. Vi-
sual comparison of k-planes, TensoRF [6], and the ground truth,
on orchids (top) and T-rex (bottom).

mation is not readily available. Full per-scene results may
be found in the appendix.

4.1. Static scenes

We first demonstrate our triplane model on the bounded,
360◦, synthetic scenes from NeRF [24]. We use a
model with three symmetric spatial resolutions N ∈
{128, 256, 512} and feature length M = 32 at each scale;
please see the appendix for ablation studies over these
hyperparameters. The explicit and hybrid versions of our
model perform similarly, within the range of recent results
on this benchmark. Fig. 4 shows zoomed-in visual results
on a small sampling of scenes. We also present results of
our triplane model on the unbounded, forward-facing, real
scenes from LLFF [23]. Our results on this dataset are simi-
lar to the synthetic static scenes; both versions of our model
match or exceed the prior state-of-the-art, with the hybrid
version achieving slightly higher metrics than the fully ex-
plicit version. Fig. 5 shows zoomed-in visual results on a
small sampling of scenes.

4.2. Dynamic scenes

We evaluate our hexplane model on two dynamic scene
datasets: a set of synthetic, bounded, 360◦, monocular
videos from D-NeRF [30] and a set of real, unbounded,
forward-facing, multiview videos from DyNeRF [16].

The D-NeRF dataset contains eight videos of vary-
ing duration, from 50 frames to 200 frames per video.
Each timestep has a single training image from a different
viewpoint; the camera “teleports” between adjacent times-
tamps [13]. Standardized test views are from novel cam-
era positions at a range of timestamps throughout the video.
Both our explicit and hybrid models outperform D-NeRF
in both quality metrics and training time, though they do
not surpass very recent hybrid methods TiNeuVox [9] and
V4D [11], as shown in Fig. 7.

The DyNeRF dataset contains six 10-second videos
recorded at 30 fps simultaneously by 15-20 cameras from
a range of forward-facing view directions; the exact num-
ber of cameras varies per scene because a few cameras pro-
duced miscalibrated videos. A central camera is reserved

6



Ours-explicit Ours-hybrid DyNeRF MixVoxels Neural Volumes Ground truth

Figure 6. Qualitative video results. Our hexplane model rivals the rendering quality of state-of-the-art neural rendering methods. Our
renderings were obtained after at most 4 hours of optimization on a single GPU whereas DyNeRF trained for a week on 8 GPUs. MixVoxels
frame comes from a slightly different video rendering, and is thus slightly shifted.

PSNR ↑ SSIM ↑ Train Time ↓ # Params ↓
NeRF [24] (static, synthetic)

Ours-explicit 32.21 0.960 38 min 33M
Ours-hybrid 32.36 0.962 38 min 33M
Plenoxels [10] 31.71 0.958 11 min ∼500M
TensoRF [6] 33.14 0.963 17 min 18M
I-NGP [25] 33.18 - 5 min ∼ 16M

LLFF [23] (static, real)

Ours-explicit 26.78 0.841 33 min 19M
Ours-hybrid 26.92 0.847 33 min 19M
Plenoxels 26.29 0.839 24 min ∼500M
TensoRF 26.73 0.839 25 min 45M

D-NeRF [30] (dynamic, synthetic)

Ours-explicit 31.05 0.97 52 min 37M
Ours-hybrid 31.61 0.97 52 min 37M
D-NeRF 29.67 0.95 48 hrs 1-3M
TiNeuVox [9] 32.67 0.97 30 min ∼12M
V4D [11] 33.72 0.98 4.9 hrs 275M

DyNeRF [16] (dynamic, real)

Ours-explicit 30.88 0.960 3.7 hrs 51M
Ours-hybrid 31.63 0.964 1.8 hrs 27M
DyNeRF [16] 129.58 - 1344 hrs 7M
LLFF [23] 123.24 - - -
MixVoxels-L [37] 30.80 0.960 1.3 hrs 125M

Phototourism [15] (variable appearance)

Ours-explicit 22.25 0.859 35 min 36M
Ours-hybrid 22.92 0.877 35 min 36M
NeRF-W [20] 27.00 0.962 384 hrs ∼2M
NeRF-W (public)2 19.70 0.764 164 hrs ∼2M
LearnIt [35] 19.26 - - -
1 DyNeRF and LLFF only report metrics on the flame salmon video
(the first 10 seconds); average performance may be higher as this
is one of the more challenging videos. 2 Open-source version
https://github.com/kwea123/nerf_pl/tree/nerfw
where we re-implemented test-time optimization as for k-planes.

Table 3. Results. Averaged metrics over all scenes in the respective
datasets. Note that Phototourism scenes use MS-SSIM (multiscale
structural similarity) instead of SSIM. K-planes timings are based
on a single NVIDIA A30 GPU. Please see the appendix for per-
scene results and the website for video reconstructions.

(a) Ours-explicit (b) TiNeuVox (c) V4D (d) D-NeRF

Figure 7. Zoomed qualitative results on scenes from D-
NeRF [30]. Visual comparison of k-planes, D-NeRF [30], TiNeu-
Vox [9] and V4D [11], on t-rex (top) and hook (bottom).

for evaluation, and training uses frames from the remain-
ing cameras. Both our methods again produce similar qual-
ity metrics to prior state-of-the-art, including recent hybrid
method MixVoxels [37], with our hybrid method achieving
higher quality metrics. See Fig. 6 for a visual comparison.

4.2.1 Decomposing time and space

One neat consequence of our planar decomposition of time
and space is that it naturally disentangles dynamic and static
portions of the scene. The static-only part of the scene can
be obtained by setting the three time planes to one (the mul-
tiplicative identity). Subtracting the static-only rendered im-
age from the full rendering (i.e. with the time plane param-
eters not set to 1), we can reveal the dynamic part of the
scene. Fig. 9 shows this decomposition of time and space.
This natural volumetric disentanglement of a scene into
static and dynamic regions may enable many applications
across augmented and virtual reality [3].

We can also visualize the time planes to better under-
stand where motion occurs in a video. Fig. 8 shows the av-
eraged features learned by the xt plane in our model for
the flame salmon and cut beef DyNeRF videos, in which
we can identify the motions of the hands in both space and
time. The xt plane learns to be sparse, with most entries
equal to the multiplicative identity, due to a combination of
our sparse transients prior and the true sparsity of motion in
the video. For example, in the left side of Fig. 8 one of the
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Figure 8. Visualization of a time plane. The xt plane highlights the dynamic regions in the scene. The wiggly patterns across time
correspond to the motion of the person’s hands and cooking tools, in the flame salmon scene (left) where only one hand moves and the cut
beef scene (right) where both hands move.

Full Space Time

Full Space Time

Figure 9. Decomposition of space and time. K-planes (left) natu-
rally decomposes a 3D video into static and dynamic components.
We render the static part (middle) by setting the time planes to
the identity, and the remainder (right) is the dynamic part. Top
shows the flame salmon multiview video [16] and bottom shows
the jumping jacks monocular video [30].

cook’s arms contains most of the motion, while in the right
side both arms move. Having access to such an explicit rep-
resentation of time allows us to add time-specific priors.

4.3. Variable appearance

Our variable appearance experiments use the Photo-
tourism dataset [15], which includes photos of well-known
landmarks taken by tourists with arbitrary view direc-
tions, lighting conditions, and transient occluders, mostly
other tourists. Our experimental conditions parallel those
of NeRF-W [20]: we train on more than a thousand tourist
photographs and test on a standard set that is free of tran-
sient occluders. Like NeRF-W, we evaluate on test images
by optimizing our per-image appearance feature on the left
half of the image and computing metrics on the right half.
Visual comparison to prior work is shown in the appendix.

Also similar to NeRF-W [4, 20], we can interpolate in
the appearance code space. Since only the color decoder
(and not the density decoder) takes the appearance code as
input, our approach is guaranteed not to change the geome-
try, regardless of whether we use our explicit or our hybrid

Figure 10. Appearance interpolation. Like NeRF-W [20], we can
interpolate our appearance code to alter the visual appearance of
landmarks. We show three test views from the Trevi fountain with
appearance codes corresponding to day and night.

model. Fig. 10 shows that our planar decomposition with a
32-dimensional appearance code is sufficient to accurately
capture global appearance changes in the scene.

5. Conclusions
We introduced a simple yet versatile method to decom-

pose a d-dimensional space into
(
d
2

)
planes, which can be

optimized directly from indirect measurements and scales
gracefully in model size and optimization time with in-
creasing dimension, without any custom CUDA kernels. We
demonstrated that the proposed k-planes decomposition ap-
plies naturally to reconstruction of static 3D scenes as well
as dynamic 4D videos, and with the addition of a global ap-
pearance code can also extend to the more challenging task
of unconstrained scene reconstruction. K-planes is the first
explicit, simple model to demonstrate competitive perfor-
mance across such varied tasks.
Acknowledgments. Many thanks to Matthew Tancik,
Ruilong Li, and other members of KAIR for helpful dis-
cussion and pointers. We also thank the DyNeRF authors
for their response to our questions about their method.
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6. Appendix
6.1. Volumetric rendering

We use the same volume rendering formula as NeRF
[24], originally from [21], where the color of a pixel is rep-
resented as a sum over samples taken along the correspond-
ing ray through the volume:

N∑
i=1

exp

−
i−1∑
j=1

σjδj

(
1− exp(−σiδi)

)
ci (9)

where the first exp represents ray transmission to sample i,
1−exp(−σiδi) is the absorption by sample i, σi is the (post-
activation) density of sample i, and ci is the color of sample
i, with distance δi to the next sample.

6.2. Per-scene results

Fig. 11 provides a qualitative comparison of methods for
the Phototourism dataset, on the Trevi fountain scene. We
also provide quantitative metrics for each of the three tasks
we study, for each scene individually. Tab. 7 reports met-
rics on the static synthetic scenes, Tab. 8 reports metrics on
the static real forward-facing scenes, Tab. 9 reports metrics
on the dynamic synthetic monocular “teleporting camera”
scenes, Tab. 10 reports metrics on the dynamic real forward-
facing multiview scenes, and Tab. 11 reports metrics on the
Phototourism scenes.

6.3. Ablation studies

Multiscale. In Tab. 4, we ablate our model on the static
Lego scene [24] with respect to our multiscale planes, to
assess the value of including copies of our model at different
scales.
Feature length. In Tab. 5, we ablate our model on the
static Lego scene with respect to the feature dimension M
learned at each scale.
Time smoothness regularizer. Sec. 3.2 describes our
temporal smoothness regularizer based on penalizing the
norm of the second derivative over the time dimension,
to encourage smooth motion and discourage acceleration.
Tab. 6 illustrates an ablation study of this regularizer on the
Jumping Jacks scene from D-NeRF [30].

7. Model hyperparameters
Our full hyperparameter settings are available in the con-

fig files in our released code, at https://github.com/
sarafridov/K-Planes.

Scales Explicit Hybrid
(32 Feat. Each) PSNR ↑ PSNR ↑ # params ↓

64, 128, 256, 512 35.26 35.79 34M
128, 256, 512 35.29 35.75 33M

256, 512 34.52 35.37 32M
512 32.93 33.60 25M

64, 128, 256 34.26 35.07 8M

Scales Explicit Hybrid
(96 Feat. Total) PSNR ↑ PSNR ↑ # params ↓

64, 128, 256, 512 35.16 35.67 25M
128, 256, 512 35.29 35.75 33M

256, 512 34.50 35.16 47M
512 33.12 34.09 76M

64, 128, 256 34.26 35.07 8M

Table 4. Ablation study over scales. Including even a single lower
scale improves performance, for both our explicit and hybrid mod-
els, even when holding the total feature dimension constant. Us-
ing lower scales only (excluding resolution 5123) substantially re-
duces model size and yields quality much better than using high
resolution alone, though slightly worse than including both low
and high resolutions. This experiment uses the static Lego scene;
in the top table each scale is allocated 32 features and in the bottom
table a total of 96 features are allocated evenly among all scales.

Feature Length Explicit Hybrid
(M ) PSNR ↑ PSNR ↑ # params ↓

2 30.66 32.05 2M
4 32.27 34.18 4M
8 33.80 35.12 8M

16 34.80 35.44 17M
32 35.29 35.75 33M
64 35.38 35.88 66M

128 35.45 35.99 132M

Table 5. Ablation study over feature length M . Increasing the
feature length M learned at each scale consistently improves qual-
ity for both our models, with a corresponding linear increase in
model size and optimization time. Our experiments in the main
text use a mixture of M = 16 and M = 32; for specific applica-
tions it may be beneficial to vary M along this tradeoff between
quality and model size. This experiment uses the static Lego scene
with 3 scales: 128, 256, and 512.
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Figure 11. Qualitative results from Phototourism dataset. We compare our model with strong baselines. Our method captures the
geometry and appearance of the scene, but produces slightly lower resolution results than NeRF-W. Note that our model optimizes in just
35 minutes on a single GPU compared to NeRF-W, which takes 2 days on 8 GPUs.

Time Smoothness Explicit Hybrid
Weight (λ) PSNR ↑ PSNR ↑

0.000 30.45 30.86
0.001 31.61 32.23
0.010 32.00 32.64
0.100 31.96 32.58
1.000 31.36 32.22

10.000 30.45 31.63

Table 6. Ablation study over temporal smoothness regulariza-
tion. For both models, a temporal smoothness weight of 0.01
is best, with PSNR degrading gradually with over- or under-
regularization. This experiment uses the Jumping Jacks scene with
4 scales: 64, 128, 256, and 512, and 32 features per scale.
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PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-explicit 34.82 25.72 31.2 36.65 35.29 29.49 34.00 30.51 32.21
Ours-hybrid 34.99 25.66 31.41 36.78 35.75 29.48 34.05 30.74 32.36
INGP [25] 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18
TensoRF [6] 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77 33.14
Plenoxels [10] 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71
JAXNeRF [7, 24] 34.20 25.27 31.15 36.81 34.02 30.30 33.72 29.33 31.85

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-explicit 0.981 0.937 0.975 0.982 0.978 0.949 0.988 0.892 0.960
Ours-hybrid 0.983 0.938 0.975 0.982 0.982 0.950 0.988 0.897 0.962
INGP - - - - - - - - -
TensoRF 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895 0.963
Plenoxels 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.890 0.958
JAXNeRF 0.975 0.929 0.970 0.978 0.970 0.955 0.983 0.868 0.954

Table 7. Full results on static synthetic scenes [24]. Dashes denote values that were not reported in prior work.

PSNR ↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns Mean

Ours-explicit 32.72 24.87 21.07 31.34 19.89 28.37 27.54 28.40 26.78
Ours-hybrid 32.64 25.38 21.30 30.44 20.26 28.67 28.01 28.64 26.92
NeRF [24] 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50
Plenoxels [10] 30.22 25.46 21.41 31.09 20.24 27.83 26.48 27.58 26.29
TensoRF (L) [6] 32.35 25.27 21.30 31.36 19.87 28.60 26.97 28.14 26.73
DVGOv2 [33] - - - - - - - - 26.34

SSIM ↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns Mean

Ours-explicit 0.955 0.809 0.738 0.898 0.665 0.867 0.909 0.884 0.841
Ours-hybrid 0.957 0.828 0.746 0.890 0.676 0.872 0.915 0.892 0.847
NeRF [24] 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828 0.811
Plenoxels [10] 0.937 0.832 0.760 0.885 0.687 0.862 0.890 0.857 0.839
TensoRF (L) [6] 0.952 0.814 0.752 0.897 0.649 0.871 0.900 0.877 0.839
DVGOv2 [33] - - - - - - - - 0.838

Table 8. Full results on static forward-facing scenes [23]. Dashes denote values that were not reported in prior work.
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PSNR ↑
Hell Warrior Mutant Hook Balls Lego T-Rex Stand Up Jumping Jacks Mean

Ours-explicit 25.60 33.56 28.21 38.99 25.46 31.28 33.27 32.00 31.05
Ours-hybrid 25.70 33.79 28.50 41.22 25.48 31.79 33.72 32.64 31.61
D-NeRF [30] 25.02 31.29 29.25 32.80 21.64 31.75 32.79 32.80 29.67
T-NeRF [30] 23.19 30.56 27.21 32.01 23.82 30.19 31.24 32.01 28.78
Tensor4D [31] - - - - 26.71 - 36.32 34.43 -
TiNeuVox [9] 28.17 33.61 31.45 40.73 25.02 32.70 35.43 34.23 32.67
V4D [11] 27.03 36.27 31.04 42.67 25.62 34.53 37.20 35.36 33.72

SSIM ↑
Hell Warrior Mutant Hook Balls Lego T-Rex Stand Up Jumping Jacks Mean

Ours-explicit 0.951 0.982 0.951 0.989 0.947 0.980 0.980 0.974 0.969
Ours-hybrid 0.952 0.983 0.954 0.992 0.948 0.981 0.983 0.977 0.971
D-NeRF [30] 0.95 0.97 0.96 0.98 0.83 0.97 0.98 0.98 0.95
T-NeRF [30] 0.93 0.96 0.94 0.97 0.90 0.96 0.97 0.97 0.95
Tensor4D [31] - - - - 0.953 - 0.983 0.982 -
TiNeuVox [9] 0.97 0.98 0.97 0.99 0.92 0.98 0.99 0.98 0.97
V4D [11] 0.96 0.99 0.97 0.99 0.95 0.99 0.99 0.99 0.98

Table 9. Full results on monocular “teleporting-camera” dynamic scenes. We use the synthetic scenes from D-NeRF [30], which we
refer to as monocular “teleporting-camera” because although there is a single training view per timestep, the camera can move arbitrarily
between adjacent timesteps. Dashes denote unreported values. TiNeuVox trains in 30 minutes, V4D in 4.9 hours, D-NeRF in 2 days, and
Tensor4D for an unspecified duration (Tensor4D reports iterations rather than time). Our reported results were obtained after roughly 1
hour of optimization on a single GPU. Like D-NeRF and TiNeuVox, we train and evaluate using half-resolution images (400 by 400 pixels).

PSNR ↑
Coffee Martini Spinach Cut Beef Flame Salmon1 Flame Steak Sear Steak Mean

Ours-explicit 28.74 32.19 31.93 28.71 31.80 31.89 30.88
Ours-hybrid 29.99 32.60 31.82 30.44 32.38 32.52 31.63
LLFF [23] - - - 23.24 - - -
DyNeRF [16] - - - 29.58 - - -
MixVoxels-L† [37] 29.36 31.61 31.30 29.92 31.21 31.43 30.80

SSIM ↑
Coffee Martini Cook Spinach Cut Beef Flame Salmon1 Flame Steak Sear Steak Mean

Ours-explicit 0.943 0.968 0.965 0.942 0.970 0.971 0.960
Ours-hybrid 0.953 0.966 0.966 0.953 0.970 0.974 0.964
LLFF - - - 0.848 - - -
DyNeRF - - - 0.961 - - -
MixVoxels-L 0.946 0.965 0.965 0.945 0.970 0.971 0.960

† Very recent/concurrent work. MixVoxels was released in December 2022. 1Using the first 10 seconds of the 30 second long video.

Table 10. Full results on multiview dynamic scenes [16]. Dashes denote unreported values. Note that our method optimizes in less than
4 GPU hours, whereas DyNeRF trains on 8 GPUs for a week, approximately 1344 GPU hours.
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PSNR ↑
Brandenburg Gate Sacre Coeur Trevi Fountain Mean

Ours-explicit 24.85 19.90 22.00 22.25
Ours-hybrid 25.49 20.61 22.67 22.92
NeRF-W [20] 29.08 25.34 26.58 27.00
NeRF-W (public)† 21.32 19.17 18.61 19.70
LearnIt [35] 19.11 19.33 19.35 19.26

MS-SSIM ↑
Brandenburg Gate Sacre Coeur Trevi Fountain Mean

Ours-explicit 0.912 0.821 0.845 0.859
Ours-hybrid 0.924 0.852 0.856 0.877
NeRF-W 0.962 0.939 0.934 0.945
Nerf-W (public)† 0.845 0.752 0.694 0.764
LearnIt - - - -

† Open-source version https://github.com/kwea123/nerf_pl/tree/nerfw where we implement the test-time optimization ourselves
exactly as for k-planes. NeRF-W code is not public.

Table 11. Full results on phototourism scenes. Note that our results were obtained after about 35 GPU minutes, whereas NeRF-W trains
with 8 GPUs for two days, approximately 384 GPU hours.
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Abstract

The theory of Koopman operators allows to deploy non-parametric machine learn-
ing algorithms to predict and analyze complex dynamical systems. Estimators such
as principal component regression (PCR) or reduced rank regression (RRR) in ker-
nel spaces can be shown to provably learn Koopman operators from finite empirical
observations of the system’s time evolution. Scaling these approaches to very long
trajectories is a challenge and requires introducing suitable approximations to make
computations feasible. In this paper, we boost the efficiency of different kernel-
based Koopman operator estimators using random projections (sketching). We de-
rive, implement and test the new “sketched” estimators with extensive experiments
on synthetic and large-scale molecular dynamics datasets. Further, we establish non
asymptotic error bounds giving a sharp characterization of the trade-offs between
statistical learning rates and computational efficiency. Our empirical and theoretical
analysis shows that the proposed estimators provide a sound and efficient way to
learn large scale dynamical systems. In particular our experiments indicate that the
proposed estimators retain the same accuracy of PCR or RRR, while being much
faster. Code is available at https://github.com/Giodiro/NystromKoopman.

1 Introduction

In the physical world, temporally varying phenomena are everywhere, from biological processes in
the cell to fluid dynamics to electrical fields. Correspondingly, they generate large amounts of data
both through experiments and simulations. This data is often analyzed in the framework of dynamical
systems, where the state of a system x is observed at a certain time t, and the dynamics is described
by a function f which captures its evolution in time

xt+1 = f(xt).

The function f must capture the whole dynamics, and as such it may be non-linear and even stochastic
for instance when modeling stochastic differential equations, or simply noisy processes. Applications
of this general formulation arise in fields ranging from robotics, atomistic simulations, epidemiology,
and many more. Along with a recent increase in the availability of simulated data, data-driven
techniques for learning the dynamics underlying physical systems have become commonplace. The
typical approach of such techniques is to acquire a dataset of training pairs (xt,yt = xt+1) sampled
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in time, and use them to learn a model for f which minimizes a forecasting error. Since dynamical
systems stem from real physical processes, forecasting is not the only goal and the ability to interpret
the dynamics is paramount. One particularly important dimension for interpretation is the separation
of dynamics into multiple temporal scales: fast fluctuations can e.g. be due to thermodynamical noise
or electrical components in the system, while slow dynamics describe important conformational
changes in molecules or mechanical effects.

Koopman operator theory [24, 25] provides an elegant framework in which the potentially non-linear
dynamics of the system can be studied via the Koopman operator

(Kψ)(x) = E
[
ψ(f(x))

]
, (1)

which has the main advantage of being linear but is defined on a typically infinite-dimensional set of
observable functions. The expectation in (1) is taken with respect to the potential stochasticity of f .
Thanks to its linearity, the operator K can e.g. be applied twice to get two-steps-ahead forecasts, and
one can compute its spectrum (beware however that K is not self-adjoint, unless the dynamical process
is time-reversible). Accurately approximating the Koopman operator and its spectral properties is of
high interest for the practical analysis of dynamical systems. However doing so efficiently for long
temporal trajectories remains challenging. In this paper we are interested in designing estimators
which are both theoretically accurate and computationally efficient.

Related works Learning the spectral properties of the Koopman operator directly from data has
been considered for at least 3 decades [36], resulting in a large body of previous work. Among the
different approaches proposed over time (see Mezić [37] for a recent review) it is most common to
search for finite dimensional approximations to the operator. DMD [52, 59], tICA [38, 45] and many
subsequent extensions [28] for example can be seen as minimizers of the forecasting error when
ψ is restricted to be a linear function of the states [48]. eDMD [62, 22] and VAC [41, 42] instead
allow for a (potentially learnable, as in recent deep learning algorithms [29, 34, 65, 58]) dictionary
of non-linear functions ψ. KernelDMD [63, 23] and kernel tICA [53] are further generalizations
which again approximate the Koopman operator but using an infinite dimensional space of features ψ,
encoded by the feature map of a reproducing kernel. While often slow from a computational point of
view, kernel methods are highly expressive and can be analyzed theoretically, to prove convergence
and derive learning rates of the resulting estimators [26]. Approximate kernel methods which are
much faster to run have been recently used for Koopman operator learning by Baddoo et al. [6] where
an iterative procedure is used to identify the best approximation to the full kernel, but no formal
learning rates are demonstrated, and by Ahmad et al. [3] who derive learning rates in Hilbert-Schmidt
norm (while we consider operator norm) for the Nyström KRR estimator (one of the three considered
in this paper).

Contributions In this paper we adopt the kernel learning approach. Starting from the problem of
approximating the Koopman operator in a reproducing kernel Hilbert space, we derive three different
estimators based on different inductive biases: kernel ridge regression (KRR) which comes from
Tikhonov regularization, principal component regression (PCR) which is equivalent to dynamic
mode decompositin (DMD) and its extensions, and reduced rank regression (RRR) which comes
from a constraint on the maximum rank of the estimator [21]. We show how to overcome the
computational scalability problems inherent in full kernel methods using an approximation based
on random projections which is known as the Nyström method [54, 61]. The approximate learning
algorithms scale very easily to the largest datasets, with a computational complexity which goes
from O(n3) for the exact algorithm to O(n2) for the approximate one. We can further show that
the Nyström KRR, PCR and RRR estimators have the same convergence rates as theirs exact, slow
counterparts – which are known to be optimal under our assumptions. We provide learning bounds in
operator norm, which are known to translate to bounds for dynamic mode decomposition and are
thus of paramount importance for applications. Finally, we thoroughly validate the approximate PCR
and RRR estimators on synthetic dynamical systems, comparing efficiency and accuracy against their
exact counterparts [26], as well as recently proposed fast Koopman estimator streaming KAF [18].
To showcase a realistic scenario, we train on a molecular dynamics simulation of the fast-folding
Trp-cage protein [32].

Structure of the paper We introduce the setting in Section 2, and define our three estimators
in Section 3. In Section 4 we provide bounds on the excess risk of our estimators, and extensive
experiments on synthetic as well as large-scale molecular dynamics datasets in Section 5.
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2 Background and related work

Notation We consider a measurable space (X ,B) where X corresponds to the state space, and
denote L2

π := L2(X ,B, π) the L2 space of functions on X w.r.t. to a probability measure π, and
L∞
π the space of measurable functions bounded almost everywhere. We denote HS(H) the space of

Hilbert-Schmidt operators on a space H.

Setting The setting we will consider is that of Markovian, time-homogeneous stochastic process
{Xt}t∈N on X . By definition of a Markov process,Xt only depends onXt−1 and not on any previous
states. Time-homogeneity ensures that the transition probability P

[
Xt+1 ∈ B|Xt = x

]
for any

measurable set B does not depend on t, and can be denoted with p(x, B). This implies in particular
that the distribution of (Xt, Xt+1) does not depend on t, and we denote it ρ in the following. We
further assume the existence of the invariant density π which satisfies π(B) =

∫
X π(x)p(x, B) dx.

This classical assumption allows one to study large class of stochastic dynamical systems, but also
deterministic systems on the attractor, see e.g. [12]. The Koopman operator Kπ : L2

π(X ) → L2
π(X )

is a bounded linear operator, defined by

(Kπg)(x) =

∫
X
p(x,y)g(y) dy = E

[
g(Xt+1)|Xt = x

]
, g ∈ L2

π(X ),x ∈ X . (2)

We are in particular interested in the eigenpairs (λi, φi) ∈ C× L2
π , that satisfy

Kπφi = λiφi. (3)

Through this decomposition it is possible to interpret the system by separating fast and slow pro-
cesses, or projecting the states onto fewer dimensions [13, 17, 7]. In particular, the Koopman mode
decomposition (KMD) allows to propagate the system state in time. Given an observable g : X → Rd

such that g ∈ span{φi|i ∈ N}, the modes allow to reconstruct g(x) with a Koopman eigenfunction
basis. The modes ηg

i ∈ Cd are the coefficients of this basis expansion:

(Kπg)(x) = E
[
g(Xt)|X0 = x

]
=
∑
i

λiφi(x)η
g
i . (4)

This decomposition describes the system’s dynamics in terms of a stationary component (the Koopman
modes), a temporal component (the eigenvalues λi) and a spatial component (eigenfunctions φi).

Kernel-based learning In this paper we approximate Kπ with kernel-based algorithms, using
operators in reproducing kernel Hilbert spaces (RKHS) H associated with kernel k : X × X → R
and feature map ϕ : X → H. We wish to find an operator A : H → H which minimizes the risk

RHS(A) = Eρ

[
ℓ(A, (x,y))

]
where ℓ(A, (x,y)) := ∥ϕ(y)−Aϕ(x)∥2. (5)

The operator A∗ should thus be understood as an estimator of the Koopman operator Kπ in H as
will be clarified in (15). In practice π and ρ are unknown, and one typically has access to a dataset
{(xi,yi)}ni=1 sampled from ρ, where each pair (xi,yi = f(xi)) may equivalently come from a
single long trajectory or multiple shorter ones concatenated together. We thus use the empirical risk

R̂HS(A) =
1

n

n∑
i=1

ℓ(A, (xi,yi)) (6)

as a proxy for (5). In practice, minimizing eq. (6) may require finding the solution to a very badly
conditioned linear system. To avoid this potential pitfall, different regularization methods (such as
Tikhonov or truncated SVD) can be applied on top of the empirical risk.

Remark 2.1 (Connections to other learning problems): The problem of minimizing eqs. (5) and (6)
has strong connections to learning conditional mean embeddings [55, 40, 30] where the predictors
and targets are embedded in different RKHSs, and to structured prediction [10, 11] which is an even
more general framework. On the other hand, the most substantial difference from the usual kernel
regression setting [8] is the embedding of both targets and predictors into a RKHS, instead of just
targets.

We denote the input and cross covariance C = Eπ[ϕ(x)⊗ ϕ(x)] and CY X = Eρ[ϕ(y)⊗ ϕ(x)], and
their empirical counterparts as Ĉ = 1

n

∑n
i=1[ϕ(xi)⊗ ϕ(xi)] and ĈY X = 1

n

∑n
i=1 ϕ(yi)⊗ ϕ(xi)].
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We also use the abbreviation Cλ := C + λI . Minimizing the empirical risk (6) with Tikhonov
regularization [8] yields the following KRR estimator

Âλ = argmin
A∈HS(H)

R̂HS(A) + λ∥A∥2HS = ĈY X(Ĉ + λI)−1. (7)

Eq. (7) can be computed by transforming its expression with the kernel trick [20], to arrive at a
form where one must invert the kernel matrix – a n × n matrix whose i, j-th entry is k(xi,xj).
This operation requires O(n3) time and O(n2) memory, severely limiting the scalability of KRR to
n ≲ 100 000 points. Improving the scalability of kernel methods is a well-researched topic, with the
most important solutions being random features [46, 47, 64, 19] and random projections [54, 61, 19].
In this paper we use the latter approach, whereby the kernel matrix is assumed to be approximately
low-rank and is sketched to a lower dimensionality. In particular we will use the Nyström method to
approximate the kernel matrix projecting it onto a small set of inducing points, chosen among the
training set. The sketched estimators are much more efficient than the exact ones, increasingly so
as the training trajectories become longer. For example, the state of the art complexity for solving
(non vector valued) approximate kernel ridge regression is O(n

√
n) time instead of O(n3) [35, 1].

Furthermore, when enough inducing points are used (typically on the order of
√
n), the learning rates

of the exact and approximate estimators are the same, and optimal [5, 49]. Hence it is possible – and
in this paper we show it for learning the Koopman operator – to obtain large efficiency gains, without
losing anything in terms of theoretical guarantees of convergence.

3 Nyström estimators for Koopman operator regression

In this section, we introduce three efficient approximations of the KRR, PCR and RRR estimators of
the Koopman operator. Our estimators rely on the Nyström approximation, i.e. on random projections
onto low-dimensional subspaces of H spanned by the feature-embeddings of subsets of the data.
We thus consider two sets of m≪ n inducing points {x̃j}mj=1 ⊂ {xt}nt=1 and {ỹj}mj=1 ⊂ {yt}nt=1
sampled respectively from the input and output data. The choice of these inducing points (also
sometimes called Nyström centers) is important to obtain a good approximation. Common choices
include uniform sampling, leverage score sampling [15, 51], and iterative procedures such as the
one used in [6] to identify the most relevant centers. In this paper we focus on uniform sampling for
simplicity, but we stress that our theoretical results in Section 4 can easily be extended to leverage
scores sampling by means of [49, Lemma 7]. To formalize the Nyström estimators, we define
operators Φ̃X , Φ̃Y : Rm → H as Φ̃Xw =

∑m
j=1 wjϕ(x̃j) and Φ̃Y w =

∑m
j=1 wjϕ(ỹj), and denote

PX and PY the orthogonal projections onto span Φ̃X and span Φ̃Y respectively.

In the following paragraphs we apply the projection operators to three estimators corresponding to
different choices of regularization. For each of them a specific proposition (proven in Appendix C)
states an efficient way of computing it based on the kernel trick. For this purpose we introduce
the kernel matrices KX̃,X ,KỸ ,Y ∈ Rm×n between training set and inducing points with entries
(KX̃,X)ji = k(x̃j ,xi), (KỸ ,Y )ji = k(ỹj ,yi), and the kernel matrices of the inducing points
KX̃,X̃ ,KỸ ,Ỹ ∈ Rm×m with entries (KX̃,X)jk = k(x̃j , x̃k) and (KX̃,X)jk = k(ỹj , ỹk).

Kernel Ridge Regression (KRR) The cost of computing Âλ defined in Eq. (7) isO(n3) [26] which
is prohibitive for datasets containing long trajectories. However, applying the projection operators to
each side of the empirical covariance operators, we obtain an estimator which additionally depends
on the m inducing points:

ÂKRR
m,λ := PY ĈY XPX(PXĈPX + λI)−1 : H → H. (8)

If H is infinite dimensional, Eq. (8) cannot be computed directly. Proposition 3.1 (proven in
Appendix C) provides a computable version of the estimator.

Proposition 3.1 (Nyström KRR): The Nyström KRR estimator (8) can be expressed as

ÂKRR
m,λ = Φ̃YK

†
Ỹ ,Ỹ

KỸ ,YKX,X̃(KX̃,XKX,X̃ + nλKX̃,X̃)†Φ̃∗
X . (9)

The computational bottlenecks are the inversion of anm×mmatrix and a large matrix multiplication,
which overall need O(2m3 + 2m2n) operations. In particular, in Section 4 we will show that
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m ≍
√
n is sufficient to guarantee optimal rates even with minimal assumptions, leading to a final

cost of O(n2). Note that a similar estimator was derived in [3].

Please note that the O(n2) cost is for a straightforward implementation, and can indeed be reduced
via iterative linear solvers (possibly preconditioned, to further reduce the practical running time), and
randomized linear algebra techniques. In particular, we could leverage results from Rudi et al. [50] to
reduce the computational cost to O(n

√
n).

Principal Component Regression (PCR) Typical settings in which Koopman operator theory is
used focus on the decomposition of a dynamical system into a small set of components, obtained
from the eigendecomposition of the operator itself. For this reason, a good prior on the Koopman
estimator is for it to be low rank. The kernel PCR estimator ÂPCR = ĈY XJĈK†r formalizes this
concept [26, 63], where here J·Kr denotes the truncation to the first r components of the spectrum.
Again this is expensive to compute when n is large, but the estimator can be sketched as follows:

ÂPCR
m = PY ĈY XJPXĈPXK†r. (10)

The next proposition provides an efficiently implementable version of this estimator.

Proposition 3.2 (Nyström PCR): The sketched PCR estimator (10) satisfies

ÂPCR
m = Φ̃YK

†
Ỹ ,Ỹ

KỸ ,YKX,X̃JK†
X̃,X̃

KX̃,XKX,X̃KrΦ̃∗
X (11)

requiring O(2m3 + 2m2n) operations, i.e. optimal rates can again be obtained at a cost of at most
O(n2) operations.

Note that with m = n, ÂPCR
m is equivalent to the kernel DMD estimator [63], also known as kernel

analog forecasting (KAF) [4]. The sketched estimator of Proposition 3.2 was also recently derived
in [6], albeit without providing theoretical guarantees.

Reduced Rank Regression (RRR) Another way to promote low-rank estimators is to add an
explicit rank constraint when minimizing the empirical risk. Combining such a constraint with
Tikhonov regularization corresponds to the reduced rank regression [21, 26] estimator:

ARRR
λ = argmin

A∈HS:rk(A)≤r

R̂HS(A) + λ∥A∥2HS. (12)

Minimizing Eq. (12) requires solving a n × n generalized eigenvalue problem. The following
proposition introduces the sketched version of this estimator, along with a procedure to compute it
which instead requires the solution of a m×m eigenvalue problem. For m ≍

√
n, which is enough to

guarantee optimal learning rates with minimal assumptions (see Section 4), this represents a reduction
from O(n3) to O(n

√
n) time.

Proposition 3.3 (Nyström RRR): The Nyström RRR estimator can be written as

ÂRRR
m,λ = JPY ĈY XPX(PXĈPX + λI)−1/2Kr(PXĈPX + λI)−1/2. (13)

To compute it, solve the m×m eigenvalue problem

(KX̃,XKX,X̃ + nλKX̃,X̃)†KX̃,XKY,ỸK
†
Ỹ ,Ỹ

KỸ ,YKX,X̃wi = σ2
iwi

for the first r eigenvectors Wr = [w1, . . . , wr], appropriately normalized. Then denoting Dr :=

K†
Ỹ ,Ỹ

KỸ ,YKX,X̃Wr and Er := (KX̃,XKX,X̃ + nλKX̃,X̃)†KX̃,XKY,ỸDr it holds

ÂRRR
m,λ = Φ̃YDrE

∗
r Φ̃

∗
X . (14)

4 Learning bounds in operator norm for the sketched estimators

In this section, we state the main theoretical results showing that optimal rates for operator learning
with KRR, PCR and RRR can be reached with Nyström estimators.
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Assumptions We first make two assumptions on the space H used for the approximation, via its
reproducing kernel k.

Assumption 4.1 (Bounded kernel): There exists K <∞ such that ess supx∼π∥ϕ(x)∥ ≤ K.

Assumption 4.1 ensures that H is compactly embedded in L2
π [57, Lemma 2.3], and we denote

Φ∗
X : H → L2

π the embedding operator which maps any function in H to its equivalence class
π-almost everywhere in L2

π .

Assumption 4.2 (Universal kernel): The kernel k is universal, i.e. cl(ran(Φ∗
X)) = L2

π .

We refer the reader to [56, Definition 4.52] for a definition of a universal kernel. The third assumption
on the RKHS is related to the embedding property from Fischer and Steinwart [16], connected to the
embedding of interpolation spaces. For a detailed discussion see Appendix A.3.

Assumption 4.3 (Embedding property): There exists τ ∈]0, 1] and cτ > 0 such that
ess supx∼π∥C

−1/2
λ ϕ(x)∥2 ≤ cτλ

−τ .

Next, we make an assumption on the decay of the spectrum of the covariance operator that is of
paramount importance for derivation of optimal learning bounds. In the following, λi(A) and σi(A)
always denote the eigenvalues and singular values of an operator A (in decreasing order).

Assumption 4.4 (Spectral decay): There exists β ∈]0, τ ] and c > 0 such that λi(C) ≤ ci−1/β .

This assumption is common in the literature, and we will see that the optimal learning rates depend
on β. It implies the bound deff(λ) := tr(C−1

λ C) ≲ λ−β on the effective dimension, which is a
key quantity in the analysis (both statements are actually equivalent, see Appendix E.2). Note that
deff(λ) = Ex∼π∥C−1/2

λ ϕ(x)∥ ≤ ess supx∼π∥C
−1/2
λ ϕ(x)∥, and thus it necessarily holds β ≤ τ .

For a Gaussian kernel, both β and τ can be chosen arbitrarily close to zero.

Finally, we make an assumption about the regularity of the problem itself. A common assumption
occurring in the literature is that E[f(X1) |X0 = ·] ∈ H for every f ∈ H, meaning that one can
define the Koopman operator directly on the space H, i.e. the learning problem is well-specified.
However, this assumption is often too strong. Following [27, D.1] we make a different assumption on
the cross-covariance remarking that, irrespectively of the choice of RKHS, it holds true whenever the
Koopman operator is self-adjoint (i.e. the dynamics is time-reversible).

Assumption 4.5 (Regularity of Kπ): There exists a > 0 such that CXY C
∗
XY ≼ a2C2.

Rates The risk can be decomposed as RHS(A) = EHS(A) + RHS,0 where RHS,0 is a constant
and EHS(A) := ∥KπΦ

∗
X − Φ∗

XA
∗∥2HS corresponds to the excess risk (more details in Appendix B).

Optimal learning bounds for the KRR estimator in the context of CME (i.e. in Hilbert-Schmidt norm)
have been developed in [30] under Assumptions 4.1 to 4.4 in well-specified and misspecified settings.
On the other hand, in the context of dynamical systems, Kostic et al. [26, Theorem 1] report the
importance of reduced rank estimators that have a small excess risk in operator norm

E(A) := ∥KπΦ
∗
X − Φ∗

XA
∗∥2H→L2

π
. (15)

The rationale behind considering the operator norm is that it allows to control the error of the
eigenvalues approximation and thus of the KMD (3), (4) as discussed below. Optimal learning
bounds in operator norm for KRR, PCR and RRR are established in [27]. In this work we show that
the same optimal rates remain valid for the Nyström KRR, PCR and RRR estimators. According
to [26] and [27] these operator norm bounds lead to reliable approximation of the Koompan mode
decomposition of Eq. (4).

We now provide our main result.

Theorem 4.6 (Operator norm error for KRR, i.i.d. data): Let assumptions 4.1 to 4.5 hold. Let
(xi,yi)1≤i≤n be i.i.d. samples, and let PY = PX be the projection induced bym Nyström landmarks
drawn uniformly from (xi)1≤i≤n without replacement. Let λ = cλn

−1/(1+β) where cλ is a constant
given in the proof, and assume n ≥ (cλ/K

2)1+β . Then it holds with probability at least 1− δ

E(ÂKRR
m,λ)

1/2 ≲ n−
1

2(1+β) provided m ≳ max(1, nτ/(1+β)) log(n/δ).

The proof is provided in Appendix E.2, but essentially relies on a decomposition involving the
terms ∥C−1/2

λ (CY X − ĈY X)∥, ∥C−1/2
λ (C − Ĉ)∥, ∥C−1/2

λ (C − Ĉ)C
−1/2
λ ∥, as well as bounding
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the quantity ∥P⊥
XC

1/2∥ where P⊥
X denotes the projection on the orthogonal of ran(PX). All these

terms are bounded using two variants of the Bernstein inequality. Note that our results can easily be
extended to leverage score sampling of the landmarks by bounding term ∥P⊥

XC
1/2∥ by means of [49,

Lemma 7]; the same rate could then be obtained using a smaller number m of Nyström points.

The rate n−1/(2(1+β)) is known to be optimal (up to the log factor) in this setting by assuming an
additional lower bound on the decay of the covariance’s eigenvalues of the kind λi(C) ≳ i−1/β , see
[27, Theorem 7 in D.4]. One can see that without particular assumptions (β = τ = 1), we only
need the number m of inducing points to be of the order of Ω(

√
n) in order to get an optimal rates.

For τ fixed, this number increases when β decreases (faster decay of the covariance’s spectrum),
however note that the optimal rate depends on β and also improves in this case. The dependence in τ
is particularly interesting, as for instance with a Gaussian kernel it is known that τ can be chosen
arbitrarily closed to zero [30, 16]. In that case, the number m of inducing points can be taken on the
order of Ω(log n).

Note that a bound for the Nyström KRR estimator has been derived in Hilbert-Schmidt norm by
Ahmad et al. [3]. Using the operator norm however allows to derive bounds on the eigenvalues (see
discussion below), which is of paramount importance for practical applications. Moreover, we now
provide a bound on the error of PCR and RRR estimators, which are not covered in [3].

Lemma 4.7 (Operator norm error for PCR and RRR, i.i.d. data): Under the assumptions of
Theorem 4.6, taking λ = cλn

−1/(1+β) with cλ as in Theorem 4.6, n ≥ (cλ/K
2)1+β , and provided

m ≳ max(1, nτ/(1+β)) log(n/δ),

it holds with probability at least 1− δ

E(ÂRRR
m,λ)

1/2 ≲ cRRR n
− 1

2(1+β) , for r s.t. σr+1(ΦY |X) < min(σr(ΦY |X), n−
1

2(1+β) )

and E(ÂPCR
m )1/2 ≲ cPCR n

− 1
2(1+β) , for r > n

1
β(1+β) ,

where cRRR = (σ2
r(ΦY |X) − σ2

r+1(ΦY |X))−1 and cPCR = (σr(ΦX) − σr+1(ΦX))−1 are the
problem dependant constants.

Note that when rank of Kπ is r, then there is no restriction on r for the RRR estimator, while for PCR
the choice of r depends on the spectral decay property of the kernel. In general, if r > n

1
β(1+β) , then

σr+1(ΦY |X) ≤ σr+1(ΦX) ≲ n−1/(2(1+β)), which implies that RRR estimator can achieve the same
rate of PCR but with smaller rank. Again the rate is sharp (up to the log factor) in this setting [27].

Koopman mode decomposition According to [26, Theorem 1], working in operator norm allows
us to bound the error of our estimators for dynamic mode decomposition, as well as to quantify how
close the eigenpairs (λ̂i, φ̂i) of an estimator Â∗ are to being eigenpairs of the Koopman operator.
Namely, recalling that for function φ̂i, the corresponding candidate for Koopman eigenfunction in
L2
π space is Φ∗

X φ̂i, one has ∥Kπ(Φ
∗
X φ̂i)− λ̂i(Φ

∗
X φ̂i)∥/∥Φ∗

X φ̂i∥ ≤ E(Â)1/2∥φ̂i∥/∥Φ∗
X φ̂i∥. While

eigenvalue and eigenfunction learning rates were studied, under additional assumptions, in [27],
where the operator norm error rates were determinant, here, in Section 5, we empirically show that
the proposed estimators accurately learn the Koopman spectrum. We refer the reader to Appendix D
for the details on computation of eigenvalues, eigenfunctions and KMD of an estimator in practice.

Dealing with non-i.i.d. data The previous results hold for i.i.d. data, which is not a very realistic
assumption when learning from sampled trajectories. Our results can however easily be extended to
β-mixing processes by considering random variables Zi =

∑k
j=1Xi+j (thus representing portions

of the trajectory) sufficiently separated in time to be nearly independent. We now consider a trajectory
x1, . . . ,xn+1 with x1 ∼ π and xt+1 ∼ p(xt, ·) for t ∈ [1, n], and use Lemma J.8 (re-stated from
[26]) which allows to translate concentration results on the Zi to concentration on the Xi by means of
the β-mixing coefficients defined as βX(k) := supB∈B⊗B

∣∣ρk(B)− (π × π)(B)
∣∣ where ρk denotes

the joint probability of (Xt, Xt+k). Using this result the concentration results provided in appendix
can thus be generalied to the β-mixing setting, and apart from logarithmic dependencies we essentially
obtain similar results to the i.i.d. setting except that the sample size n is replaced by p ≈ n/(2k).

7



Figure 1: Full and Nyström estimators trained on
L63 with increasing n. Error (left) and running
time (right) are plotted to show efficiency gains
without accuracy loss with the Nyström approxi-
mation. RBF(σ = 3.5) kernel, r = 25 principal
components and m = 250 inducing points.

Figure 2: Nyström and sKAF estimators trained
on L63 for increasing forecast horizons; the error
(left) and overall running times (right) are shown.
We used a RBF kernel with σ = 3.5, r = 50,
m = 250 (for Nyström methods) and

√
n log n

random features (for sKAF).

5 Experimental validation

In this section we show how the estimators proposed in section 3 perform in various scenarios,
ranging from synthetic low dimensional ODEs to large-scale molecular dynamics simulations. The
code for reproducing all experiments is available online. Our initial aim is to demonstrate the speed of
NysPCR and NysRRR, compared to the recently proposed alternative Streaming KAF (sKAF) [18].
Then we show that their favorable scaling properties make it possible to train on large molecular
dynamics datasets without any subsampling. In particular we run a metastability analysis of the
alanine dipeptide and the Trp-cage protein, showcasing the accuracy of our models’ eigenvalue and
eigenfunction estimates, as well as their efficiency on massive datasets (> 500 000 points)

Efficiency Benchmarks on Lorenz ’63 The chaotic Lorenz ’63 system [33] consists of 3 ODEs
with no measurement noise. With this toy dynamical system we can easily compare the Nyström
estimators to two alternatives: 1. the corresponding exact estimators and 2. the sKAF algorithm which
also uses randomized linear algebra to improve the efficiency of PCR. In this setting we sample long
trajectories from the system, keeping the first points for training (the number of training points varies
for the first experiment, and is fixed to 10 000 for the second, see fig. 2), and the subsequent ones for
testing. In Figure 1 we compare the run-time and accuracy with of NysPCR and NysRRR versus their
full counterparts. To demonstrate the different scaling regimes we fix the number of inducing points
to 250 and increase the number of data points n. The accuracy of the two solvers (as measured with
the normalized RMSE metric (nRMSE) [18] on the first variable) is identical for PCR and close for
RRR, but the running time of the approximate solvers increases much slower with n than that of the
exact solvers. Each experiment is repeated 20 times to display error bars over the choice of Nyström
centers. In the second experiment, shown in fig. 2, we reproduce the setting of [18] by training at
increasingly long forecast horizons. Plotting the nRMSE we verify that sKAF and NysPCR converge
to very similar accuracy values, although NysPCR is approximately 10 times faster. NysRRR instead
offers slightly better accuracy, at the expense of a higher running time compared to NysPCR. Error
bars are the standard deviation of nRMSE over 5 successive test sets with 10 000 points each.

Molecular dynamics datasets An important application of Koopman operator theory is in the
analysis of molecular dynamics (MD) datasets, where the evolution of a molecule’s atomic positions
as they evolve over time is modelled. Interesting systems are very high dimensional, with hundreds or
thousands of atoms. Furthermore, trajectories are generated at very short time intervals (< 1 ns) but
interesting events (e.g. protein folding/unfolding) occur at timescales on the order of at least 10 µs, so
that huge datasets are needed to have a few samples of the rare events. The top eigenfunctions of
the Koopman operator learned on such trajectories can be used to project the high-dimensional state
space onto low-dimensional coordinates which capture the long term, slow dynamics.

We take three 250 ns long simulations sampled at 1 ps of the alanine dipeptide [60], which is often
taken as a model system for molecular dynamics [43, 42]. We use the pairwise distances between
heavy atoms as features, yielding a 45-dimensional space. We train a NysRRR model with 10 000
centers on top of the full dataset (449 940 points are used for training, the rest for validation and
testing) with lag time 100 ps, and recover a 2-dimensional representation which correlates well
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Figure 3: Dynamics of the alanine dipeptide (lag-time 100), Nyström RRR model. On the left the first
two non-constant eigenfunctions, overlaid in color on the Ramachandran plot which fully describes
the metastable states. On the right the three states of a PCCA+ model trained on the eigenfunctions.

Figure 4: First eigenfunctions for Trp-cage dynamics, colored according to the membership probabil-
ity for each state in a PCCA+ model. The bottom insets show a few overlaid structures from each
state. The first eigenfunction exhibits a strong linear separation between state 1 (folded) and the other
states. The second separates between state 0 (partially folded) ant the rest. NysRRR model trained
with m = 5000, r = 10, RBF(σ = 0.02) kernel, λ = 10−10.

with the ϕ, ψ backbone dihedral angles of the molecule, known to capture all relevant long-term
dynamics. Figure 3a shows the top two eigenfunctions overlaid onto ϕ, ψ, the first separates the
slowest transition between low and high ϕ; the second separates low and high ψ. The implied
time-scales from the first two non-trivial eigenvalues are 1262 ps and 69 ps, which are close to the
values reported by Nüske et al. [43] (1400 ps and 70 ps) who used a more complex post-processing
procedure to identify time-scales. We then train a PCCA+ [14] model on the first three eigenfunctions
to obtain three states, as shown in fig. 3b. PCCA+ acts on top of a fine clustering (in our case obtained
with k-means, k = 50), to find the set of maximally stable states by analyzing transitions between the
fine clusters. The coarse clusters clearly correspond to the two transitions described above.

Finally we take a 208 µs long simulation of the fast-folding Trp-cage protein [32], sampled every
0.2 ns. Again, the states are the pairwise distances between non-hydrogen atoms belonging to the
protein, in 10 296 dimensions. A NysRRR model is trained on 626 370 points, using 5000 centers
in approximately 10 minutes. Note that without sketching this would be a completely intractable
problem. Using a lag-time of 10 ns we observe a spectral gap between the third and fourth eigenvalues,
hence we train a PCCA+ model on the first 3 eigenfunctions to obtain the states shown in fig. 4.
The first non-trivial Koopman eigenvector effectively distinguishes between the folded (state 1) and
unfolded states as is evident from the first row of fig. 4. The second one instead can be used to
identify a partially folded state of the protein (state 0), as can be seen from the insets in fig. 4.
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6 Conclusions

We introduced three efficient kernel-based estimators of the Koopman operator relying on random
projections, and provided a bound on their excess risk in operator norm – which is of paramount
importance to control the accuracy of Koopman mode decomposition. Random projections allow to
process efficiently even the longest trajectories, and these gains come for free as our estimators still
enjoy optimal theoretical learning rates. We leave for future work the refinement our analysis under
e.g. an additional source condition assumption or in the misspecified setting. Another future research
direction shall be to devise ways to further reduce the computational complexity of the estimators.

7 Acknowledgements

This paper is part of a project that has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.
819789). L. R. acknowledges the financial support of the European Research Council (grant SLING
819789), the AFOSR projects FA9550-18-1-7009, FA9550-17-1-0390 and BAA-AFRL-AFOSR-
2016-0007 (European Office of Aerospace Research and Development), the EU H2020-MSCA-RISE
project NoMADS - DLV-777826, and the Center for Brains, Minds and Machines (CBMM), funded
by NSF STC award CCF-1231216. M. P., V. K. and P. N. acknowledge financial support from PNRR
MUR project PE0000013-FAIR and the European Union (Projects 951847 and 101070617).

References

[1] Amirhesam Abedsoltan, Mikhail Belkin, and Parthe Pandit. Toward large kernel models, 2023.
arXiv:2302.02605 [cs.LG].

[2] Thomas N. E. Greville (auth.) Adi Ben-Israel. Generalized Inverses: Theory and Applications.
CMS Books in Mathematics. Springer, 2 edition, 2003.

[3] Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, and d’Alché-Buc Florence. Sketch In,
Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels,
2023. arxiv:2302.10128.

[4] Romeo Alexander and Dimitrios Giannakis. Operator-theoretic framework for forecasting
nonlinear time series with kernel analog techniques. Physica D: Nonlinear Phenomena, 409,
2020. doi: https://doi.org/10.1016/j.physd.2020.132520.

[5] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. Journal of Machine
Learning Research, 30, 2013.

[6] Peter J. Baddoo, Benjamin Herrmann, Beverley J. McKeon, and Steven L. Brunton. Kernel learn-
ing for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization.
Proceedings of the Royal Society A, 2022. doi: http://doi.org/10.1098/rspa.2021.0830.
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A Setting and notations

A.1 Operators and notations

We define the following operators:

• ΦX : L2
π → H, defined by ΦXf =

∫
X f(x)ϕ(x) dπ(x) for any f ∈ L2

π .
• Φ∗

X : H → L2
π, defined by Φ∗

Xh = ⟨h, ϕ(·)⟩H for any h ∈ H (i.e. the embedding operator
mapping a function to its π-equivalence class in L2

π).
• ΦY |X : L2

π → H, defined by ΦY |X = ΦXK∗
π .

• Φ∗
Y |X : H → L2

π , defined by Φ∗
Y |X = KπΦ

∗
X .

• C : H → H defined as C = Ex∼πϕ(x) ⊗ ϕ(x) = ΦXΦ∗
X , satisfying tr(C) ≤ K2. Note

that under our assumptions, this also corresponds to the covariance of Y .
• CXY := E(x,y)∼ρϕ(x)⊗ ϕ(y) = ΦXΦ∗

Y |X .

As well as the following discretized variants:

• Φ̂X : Rn → H, defined by Φ̂Xv =
∑n

i=1 viϕ(xi) for any v = [v1, . . . , vn] ∈ Rn

• Φ̂∗
X : H → Rn, defined by Φ̂∗

Xh = [⟨ϕ(x1), h⟩H, . . . , ⟨ϕ(xn), h⟩H]T for any h ∈ H
• Φ̂Y |X : Rn → H, defined by Φ̂Y |Xv =

∑n
i=1 viϕ(yi) for any v = [v1, . . . , vn] ∈ Rn.

• Φ̂∗
Y |X : H → Rn, defined by Φ̂∗

Y |Xh = [⟨ϕ(y1), h⟩H, . . . , ⟨ϕ(yn), h⟩H]T for any h ∈ H.

• Ĉ = 1
n Φ̂XΦ̂∗

X = 1
n

∑n
i=1 ϕ(xi)⊗ ϕ(xi) ∈ L(H) is the empirical covariance.

The Nyström discretized operators are obtained by applying the kernel map to m ≪ n inducing
points {x̃j}mj=1 ⊂ {xj}nj=1 and {ỹj}mj=1 ⊂ {yj}nj=1:

• Φ̃X : Rm → H such that Φ̃Xw =
∑m

j=1 wjϕ(x̃j).

• Φ̃Y : Rm → H such that Φ̃Y w =
∑m

j=1 wjϕ(ỹj).

Furthermore denote by PX and PY the orthogonal projections onto span Φ̃X and span Φ̃Y respec-
tively.

One important quantity to derive the rates is the so-called effective dimension, defined as

deff(λ) := tr(C−1
λ C).

where Cλ := C + λI .

A.2 Conditional mean embedding

For any x ∈ X , we denote µp(x) the conditional mean embedding associated to the transition kernel
defined as

µp(x) := E
[
ϕ(Xt+1)|Xt = x

]
=

∫
ϕ(y)p(x, dy)

The following lemma provides a characterization of Φ∗
Y |X in terms of the conditional mean embed-

ding.

Lemma A.1: We have the following relations:

ΦY |Xf =

∫
X
f(x)µp(x) dπ(x), f ∈ L2

π (16)

(Φ∗
Y |Xf)(x) = ⟨f, µp(x)⟩, f ∈ H (17)

ΦY |XΦ∗
Y |X = Ex∼πµp(x)⊗ µp(x) (18)
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Proof of Lemma A.1: For the first property:

(Φ∗
Y |Xf)(x) = (Kπ(Φ

∗
Xf))(x) (19)

=

∫
(Φ∗

Xf)(y)p(x, dy) (20)

=

∫
f(y)p(x,dy) (21)

= ⟨f,
∫
ϕ(y)p(x, dy)⟩ = ⟨f, µp(x)⟩ (22)

where we used that f and Φ∗
Xf coincide π-almost everywhere. The second property is a direct

consequence of the definition of the adjoint. For (18), we simply use (17) and the definition of ΦY |X
to get

ΦY |X(Φ∗
Y |Xf) =

∫
⟨f, µp(z)⟩µp(z) dπ(z) =

(∫
µp(z)µp(z)

∗ dπ(z)

)
f.

□

A.3 Power spaces

We now define the α-power space [H]απ in order to provide some intuition regarding Assumption 4.3.

By Assumption 4.1, tr(C) =
∫
tr(ϕ(x)⊗ϕ(x)) dπ(x) ≤ K2 and thusC is trace-class (and compact).

By [16], there exists a non-increasing summable sequence (µi)i∈I for an at most countable index set
I , a family (ei)i∈I ∈ H s.t. (Φ∗

Xei)i∈I is an orthonormal basis of spanΦ∗
X ⊆ L2

π and (µ
1/2
i ei)i∈I

is an orthonormal basis of (kerΦ∗
X)⊥ ⊆ H such that

C =
∑
i∈I

µi⟨·, µ1/2
i ei⟩Hµ1/2

i ei.

For α ≥ 0, we now define the α-power space as

[H]απ :=

∑
i∈I

aiµ
α/2
i Φ∗

Xei

∣∣∣∣∣∣ (ai)i∈I ∈ ℓ2(I)

 ⊆ L2
π

equipped with norm ∥∥∥∥∥∥
∑
i∈I

aiµ
α/2
i Φ∗

Xei

∥∥∥∥∥∥
[H]απ

:= ∥(ai)i∈I∥ℓ2(I).

We can now make the following assumption regarding the embedding of the power spaces into L∞
π .

Assumption A.2 (Embedding): There exists τ ∈ [β, 1] such that cτ := ∥[H]τπ ↪→ L∞
π ∥2 <∞.

We stress that Assumption A.2 implies in particular Assumption 4.3, and is a common assumption in
the literature, see for instance [16].

B Expression of the risk

We have the following risk decomposition.
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Lemma B.1: The risk can alternatively be written

RHS(A) = E(x,y)∼ρ∥ϕ(y)−Aϕ(x)∥2

= RHS,0 + EHS(A)

where RHS,0 := ∥ΦX∥2HS − ∥ΦY |X∥2HS

=

∫
∥µp(x)− ϕ(y)∥2 dρ(x, y)

and EHS(A) := ∥ΦY |X −AΦX∥2HS

=

∫
∥µp(x)−Aϕ(x)∥2 dπ(x).

where infA∈HS(H) EHS(A) = 0, and thus we interpret EHS as the excess risk.

Proof of Lemma B.1: Let (hi)i∈N be an orthonormal basis of H. Then

EHS(A) := ∥ΦY |X −AΦX∥2HS

=
∑
i∈N

∥Φ∗
Y |Xhi − Φ∗

XA
∗hi∥2L2

π

=
∑
i∈N

∫
((Φ∗

Y |Xhi)(x)− ⟨A∗hi, ϕ(x)⟩H)2 dπ(x)

(by (17)) =
∑
i∈N

∫
(⟨hi, µp(x)⟩H − ⟨hi, Aϕ(x)⟩H)2 dπ(x)

=

∫
∥µp(x)−Aϕ(x)∥2 dπ(x).

It holds

RHS,0 =

∫
∥µp(x)− ϕ(y)∥2 dρ(x, y)

=

∫ (
∥µp(x)∥2 − 2

〈
µp(x), ϕ(y)

〉
H + trϕ(y)ϕ(y)∗

)
dρ(x, y)

=

∫
∥µp(x)∥2 dπ(x)− 2

∫ 〈
µp(x),

∫
ϕ(y)p(x, dy)

〉
H
dπ(x) +

∫ ∫
trϕ(y)ϕ(y)∗p(x, dy) dπ(x)

(i)
= −

∫
∥µp(x)∥2 dπ(x) +

∫
tr
(
ϕ(y)ϕ(y)∗

)
dπ(y)

= − tr

(∫
µp(x)µp(x)

∗ dπ(x)

)
+ tr(C)

= − tr
(
ΦY |XΦ∗

Y |X

)
+ tr(ΦXΦ∗

X)
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where we used the invariance property of π in (i) and Lemma A.1 for the last inequality. Then one
can easily check that the sum of both corresponds to the full risk defined in (5):

RHS,0 + EHS(A) =

∫
∥µp(x)− ϕ(y)∥2 dρ(x, y) +

∫
∥µp(x)−Aϕ(x)∥2 dπ(x)

=

∫ (
∥µp(x)∥2 − 2⟨µp(x),

∫
ϕ(y)p(x, dy)⟩+

∫
∥ϕ(y)∥2p(x, dy)

)
dπ(x)

+

∫ (
∥µp(x)∥2 − 2⟨µp(x), Aϕ(x)⟩+ ∥Aϕ(x)∥2

)
dπ(x)

=

∫ (∫
∥ϕ(y)∥2p(x, dy)− 2⟨

∫
ϕ(y)p(x, dy), Aϕ(x)⟩+ ∥Aϕ(x)∥2

)
dπ(x)

=

∫ (
∥ϕ(y)∥2 − 2⟨ϕ(y), Aϕ(x)⟩+ ∥Aϕ(x)∥2

)
dρ(x, y)

=

∫
∥ϕ(y)−Aϕ(x)∥2 dρ(x, y) = RHS(A).

□

C Expression of the estimators

In this section we give proofs of propositions 3.1 to 3.3 on how to efficiently compute the Nyström
estimators.

For all three – KRR, PCR and RRR – estimators, the starting point is their respective full estimator
which can be derived by following the first-order optimality criterion for the following minimization
problems

Full KRR: ÂKRR
λ = argmin

A∈H→H
∥Φ̂Y |X −AΦ̂X∥2HS + λ∥A∥2HS (23)

Full PCR: ÂPCR = argmin
A∈H→H

∥Φ̂Y |X −AΠrΦ̂X∥2HS (24)

Full RRR: ÂRRR
λ = argmin

A∈H→H:rk(A)≤r

∥Φ̂Y |X −AΦ̂X∥2HS + λ∥A∥2HS (25)

where Πr is the orthogonal projection onto the top-r eigenvectors of Ĉ.

To derive the Nyström estimators, we project the embedded data Φ̂X , Φ̂Y |X onto the span of
the embedded inducing points – PXΦ̂X , PY Φ̂Y |X – and then express the resulting estimators
as Φ̃YW Φ̃∗

X with W ∈ Rm×m. This form is particularly useful for later computing forecasts,
eigenfunctions and Koopman modes with the estimator. In particular the following equalities for the
projection (shown here for PX but equivalently exist for PY )

PX = PXPX = Φ̃X(Φ̃∗
XΦ̃X)†Φ̃∗

X = Φ̃∗†

X Φ̃∗
X = Φ̃XΦ̃†

X ,

and the characterization of PX through the SVD of Φ̃X = UΣV ∗, such that PX = UU∗.

C.1 Nyström KRR

We begin with the Nyström KRR estimator, providing an alternative but equivalent description in
lemma C.1.

Lemma C.1 (Expression of the KRR regularization): Let U be such that PX = UU∗, U∗U = I .
Then it holds

gKRR(Ĉ) := PX(PXĈPX + λI)−1 = U(U∗ĈU + λI)−1U∗. (26)
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Proof of Lemma C.1: Using U∗U = I , it holds (U∗ĈU + λI)U∗ = U∗(UU∗ĈUU∗ + λUU∗)

and thus U∗(UU∗ĈUU∗ + λUU∗)−1 = (U∗ĈU + λI)−1U∗. As a consequence,

gKRR(Ĉ) = PX(PXĈPX + λI)−1

= UU∗(UU∗ĈUU∗ + λI)−1

= U(U∗ĈU + λI)−1U∗.

□

Then we can provide the computatable formulas for Nyström KRR

Proposition C.2 (Nyström KRR): The Nyström KRR estimator, obtained by projection of eq. (23)
is

ÂKRR
m,λ = PY ĈY XPX(PXĈPX + λI)−1

= Φ̃YK
†
Ỹ ,Ỹ

KỸ ,YKX,X̃(KX̃,XKX,X̃ + nλKX̃,X̃)†Φ̃∗
X .

Proof of Proposition C.2: Using the definition in eq. (26), and lemma C.1, we have

ÂKRR
m,λ = PY ĈY XgKRR(Ĉ)

= PY ĈY XU(U∗ĈU + λI)−1U∗

= PY ĈY XUΣV ∗V Σ−1(U∗ĈU + λI)−1Σ−1V ∗V ΣU∗

Now using the fact that Σ, V, V ∗ and U∗ĈU + λI are full-rank, it holds [2, eq. (20)]

ÂKRR
m,λ = PY ĈY XΦ̃X(V ∗)†(ΣU∗ĈUΣ+ λΣ2)†V †Φ̃∗

X

= PY ĈY XΦ̃X(V ΣU∗ĈUΣV ∗ + λV Σ2V ∗)†Φ̃∗
X .

Finally, by definition of PY , ĈY X and Ĉ,

ÂKRR
m,λ = Φ̃Y (Φ̃

∗
Y Φ̃Y )

†Φ̃∗
Y Φ̂Y |XΦ̂∗

XΦ̃X(Φ̃∗
XΦ̂XΦ̂∗

XΦ̃X + nλΦ̃∗
XΦ̃X)†Φ̃∗

X

= Φ̃YK
†
Ỹ ,Ỹ

KỸ ,YKX,X̃(KX,X̃KX,X̃ + nλKX̃,X̃)†Φ̃∗
X .

□

Remark C.1 (Alternative derivation of the Nyström KRR estimator): Note that the Nyström KRR
estimator can equivalently be derived as the solution to a variational problem similar to eq. (23),
where the operatorA is restricted to operate between spaces HX̃

:= span Φ̃X and HỸ
:= span Φ̃Y .

C.2 Nyström PCR

Define the following filter on the spectrum of PXĈPX : gPCR(Ĉ) = JPXĈPXK†r, which truncates it
to the first r components before taking the pseudo-inverse. The Nyström PCR estimator, obtained by
projection of eq. (24) is

ÂPCR
m = PY ĈY XgPCR(Ĉ). (27)

The next proposition provides an efficiently implementable version of the PCR estimator.

Proposition C.3 (Nyström PCR): The sketched PCR estimator eq. (27) satisfies

ÂPCR
m = Φ̃YK

†
Ỹ ,Ỹ

KỸ ,YKX,X̃JK†
X̃,X̃

KX̃,XKX,X̃KrΦ̃∗
X (28)
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Proof of Proposition C.3: We begin by computing the decomposition of PXĈPX which is necessary
to obtain gPCR(Ĉ). The following expressions are equivalent [39, Proposition 3] for determining its
eigenvectors h̃ and eigenvalues λ:

UU∗ĈUU∗h̃ = λh̃

U∗ĈUh = λh, h̃ = Uh.

Let the truncated eigenvalues be Λr = diag[λ1, . . . , λr] and the eigenvectors be Hr = [h1, . . . , hr].
Then H̃r = UHr must be normalized such that H̃∗

r H̃r = H∗
rU

∗UHr = I . The rank-r truncation
JPXĈPXKr is a projection onto H̃rH̃

∗
r :

JPXĈPXK†r = (UU∗ĈUU∗(UHr)(UHr)
∗)† = (UHΛH∗HrH

∗
rU

∗)† = UHrΛ
−1
r H∗

rU
∗

where we used that U∗ĈU = HΛH∗.
Now substitute U = Φ̃XV Σ−1 to simplify the eigendecomposition of U∗ĈU :

Σ−1V ∗KX̃,XKX,X̃V Σ−1h = λh

V Σ−2V ∗KX̃,XKX,X̃d = λd, h = Σ−1V ∗KX̃,XKX,X̃d. (29)

where V Σ−2V ∗ = K†
X̃,X̃

. Denote by Dr = [d1, . . . , dr] the truncated eigenvectors such that Hr =

Σ−1V ∗KX̃,XKX,X̃Dr, normalized such that H∗H = D∗KX̃,XKX,X̃K
†
X̃,X̃

KX̃,XKX,X̃D = I ,

UHrΛ
−1
r H∗

rU
∗ = Φ̃XK

†
X̃,X̃

KX̃,XKX,X̃DrΛ
−1
r D∗

rKX̃,XKX,X̃K
†
X̃,X̃

Φ̃∗
X

= Φ̃XDrΛrD
∗
r Φ̃

∗
X

= Φ̃XJK†
X̃,X̃

KX̃,XKX,X̃KrΦ̃∗
X .

Finally, we can plug the pieces together to get

PY ĈY XJPXĈPXK†r = Φ̃YK
†
Ỹ ,Ỹ

KỸ ,YKX,X̃JK†
X̃,X̃

KX̃,XKX,X̃KrΦ̃∗
X .

□

Remark C.2 (Variational problem for Nyström PCR): Note that, unlike the NysKRR estimator,
the variational problem for NysPCR where the operator is restricted to A : HX̃ → HỸ is not
equivalent to the one obtained in proposition C.3 by projecting the covariance operator. In fact, the
former does not take the full covariance into account when computing the low-rank projection, but
just the Nyström points.

C.3 Nyström RRR

The Nyström RRR estimator does not correspond to a specific spectral filter. We can nonetheless
compute it starting from the expression of the exact empirical estimator [26], projecting the covariance
operators, and rearranging the expression to result in a finite-dimensional procedure.

Proposition C.4 (Nyström RRR): The sketched RRR estimator can be written as

ÂRRR
m,λ = JPY ĈY XPX(PXĈPX + λI)−1/2Kr(PXĈPX + λI)−1/2. (30)

To compute it, solve the m×m eigenvalue problem

(KX̃,XKX,X̃ + nλKX̃,X̃)†KX̃,XKY,ỸK
†
Ỹ ,Ỹ

KỸ ,YKX,X̃wi = σ2
iwi

for the first r eigenvectors Wr = [w1, . . . , wr], normalized such that
W ∗

rKX̃,XKY,ỸK
†
Ỹ ,Ỹ

KỸ ,YKX,X̃Wr = I. Then let Dr := K†
Ỹ ,Ỹ

KỸ ,YKX,X̃Wr and

Er := (KX̃,XKX,X̃ + nλKX̃,X̃)†KX̃,XKY,Ỹ Ur, such that the following holds

ÂRRR
m,λ = Φ̃YDrE

∗
r Φ̃

∗
X . (31)
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Proof of Proposition C.4: Let B := n1/2PY ĈY XPX(PXĈPX + λI)−1/2. The computationally
intensive part for this estimator is in evaluating the rank-r truncation JBKr. Its singular values and
left singular vectors can be obtained by solving the symmetric eigenvalue problem BB∗qi = σ2

i qi.
We rewrite BB∗

BB∗ = PY Φ̂Y |XΦ̂∗
XPX(PXΦ̂XΦ̂∗

XPX + nλI)−1PXΦ̂XΦ̂∗
Y |XPY

= PY Φ̂Y |XΦ̂∗
XPXΦ̂X(Φ̂∗

XPXΦ̂X + nλI)−1Φ̂∗
Y |XPY

= PY Φ̂Y |XKX,X̃K
†
X̃,X̃

KX̃,X(KX,X̃K
†
X̃,X̃

KX̃,X + nλI)−1Φ̂∗
Y |XPY

= PY Φ̂Y |XKX,X̃K
†
X̃,X̃

(KX̃,XKX,X̃KX̃,X̃ + nλI)−1KX̃,XΦ̂∗
Y |XPY

= PY Φ̂Y |XKX,X̃(KX̃,XKX,X̃ + nλKX̃,X̃)†KX̃,XΦ̂∗
Y |XPY

where the second and fourth equalities are applications of the push-through identity, the third by
definition of projections and kernel matrices, and the last by collecting KX̃,X̃ . By construction,
the non-trivial eigenfunctions of BB∗ are in the range of PY Φ̂Y |XKX,X̃ , therefore we can set
qi = PY Φ̂Y |XKX,X̃wi for some wi ∈ Rm, and solve the following eigenvalue problem instead

PY Φ̂Y |XKX,X̃(KX̃,XKX,X̃ + nλKX̃,X̃)†KX̃,XΦ̂∗
Y |XPY Φ̂Y |XKX,X̃wi = σ2

i PY Φ̂Y |XKX,X̃wi

(KX̃,XKX,X̃ + nλKX̃,X̃)†KX̃,XKY,ỸK
†
Ỹ ,Ỹ

KỸ ,YKX,X̃wi = σ2
iwi

where we have simplified the left term of both sides of the equation.
The eigenfunctions of BB∗ are therefore qi = PY Φ̂Y |XKX,X̃wi, which must be normalized as

∥qi∥2 = w⊤
i KX̃,XKY,ỸK

†
Ỹ ,Ỹ

KỸ ,YKX,X̃wi = 1.

Thanks to this normalization, the projector onto the r leading left singular vectors of B is QrQ
∗
r ,

where Qr = [q1, . . . , qr]. Then the NysRRR estimator can be written as

QrQ
∗
rB(PXĈPX + λI)−1/2

where

B(PXĈPX + λI)−1/2 = PY ĈY XPX(PXĈPX + λI)−1

= PY Φ̂Y |XKX,X̃(KX̃,XKX,X̃ + nλKX̃,X̃)−1Φ̃∗
X .

with the same techniques we used for rewriting BB∗. Finally, let Dr and Er as in the statement. We
can apply the projection to obtain

QrQ
∗
rB(PXΦ̂XΦ̂∗

XPX + nλI)−1/2 = Φ̃YDrE
∗
r Φ̃

∗
X .

□

D Forecasting & Koopman Modes

The three estimators considered in Appendix C are all of the form

Âλ = Φ̃YW Φ̃∗
X , W ∈ Rm×m.

We will use this generic form to provide expressions for the following operations:

1. producing forecasts of the dynamical system at a future time,
2. computing the approximate eigenvalues and eigenfunctions of the Koopman operator,
3. computing the Koopman modes.

D.1 Forecasting

Given a new data-point x ∈ X and an observable function g ∈ H (note that this can simply be
the identity function), we can approximate the one-step-ahead expectation E

[
g(Xt+1)|Xt = x

]
=
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(Kπg)(x) by using the obtained estimators Â∗. Note that by the reproducing property Φ̃∗
Y g =

[g(yi), . . . , g(ym)]⊤ =: gm, then

(Â∗g)(x) = (Φ̃XW
⊤Φ̃∗

Y g)(x) = (Φ̃XW
⊤gm)(x) =

m∑
i=1

(W⊤gm)ik(x̃i,x).

D.2 Eigenfunctions and eigenvalues

We wish to compute the eigenfunctions ξ, ψ ∈ H, as well as the eigenvalues λi of Â. The left
eigenfunctions satisfy Â∗ξi = λ̄iξi and the right eigenfunctions satisfy Âψi = λiψi. In the following
we will use Mollenhauer et al. [39, Proposition 3] to manipulate the eigendecomposition of operators
in H.

Consider the decomposition W = UrV
∗
r with Ur, Vr ∈ Cm×r, which is available for all considered

estimators with r ≤ m. For example, in the Nyström RRR estimator of proposition C.4, we can
simply take Ur = Dr and Vr = Er. For the Nyström KRR estimator instead, r = m and we can
take the whole of W as our Ur and Vr = I .

To compute the right eigenfunctions ψi, such that (Φ̃Y UrV
∗
r Φ̃

∗
X)ψi = λiψi, consider the following

equivalent eigendecomposition

V ∗
r Φ̃

∗
XΦ̃Y Ur g̃i = λig̃i, where ψi = Φ̃Y Ur g̃i.

Note that Φ̃∗
XΦ̃Y = KX̃,Ỹ is a finite-dimensional object which can easily be computed. The

eigenfunctions ψi must be normalized such that ψ∗
i ψi = 1 for every i, so we must have

g̃∗i U
∗
r Φ̃

∗
Y Φ̃Y Ur g̃i = 1.

A very similar process can be followed to obtain the left eigenfunctions ξi, such that
Φ̃XVrU

∗
r Φ̃

∗
Y ξi = λ̄iξi. Here we consider instead

U∗
r Φ̃

∗
Y Φ̃XVrh̃i = λ̄ih̃i, where ξi = Φ̃XVrh̃i.

where once again, Φ̃∗
Y Φ̃X = K⊤

X̃,Ỹ
and the eigenfunctions must be normalized such that

h̃∗i V
∗
r Φ̃

∗
XΦ̃XVrh̃i = 1 for every i. Finally, ψ and ξ must be orthogonal to each other: we must have

for i, j ∈ [r] that ⟨ψi, ξ̄j⟩H = δij (where δij is a Dirac delta equals to 1 when i = j and 0 otherwise).
We can compute

⟨ψi, ξ̄j⟩H = h̃∗i V
∗
r KX̃,Ỹ Urg̃i = λj h̃

∗
i g̃j ,

and note that h̃∗i g̃j = δij , but we must normalize ξ such that

ξi = Φ̃XVrh̃i/λ̄i.

D.3 Koopman modes

Given the eigendecomposition of any estimator Â as Âr =
∑r

i=1 λiψi ⊗ ξ̄i, for an observable g we
have the following

Â∗
rg =

r∑
i=1

λiξi⟨g, ψ̄i⟩H

where ⟨g, ψ̄i⟩H = γgi are the Koopman modes. Expanding the definition of ψi we get

γgi = ⟨g, ψ̄i⟩H = g̃∗i U
∗
r Φ̃

∗
Y g = g̃∗i U

∗
r gm ∈ Cm

which we can efficiently compute.

E Excess risk of the Nyström KRR estimator

E.1 Almost-sure decomposition of the KRR excess risk
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Lemma E.1 (Excess risk decomposition in operator norm for KRR): Let Assumptions 4.1 to 4.3
and 4.5 hold. Then the Nyström KRR estimator (8) satisfies almost surely

E(ÂKRR
m,λ)

1/2 ≤ aλ1/2 + aθ21∥(Ĉλ − Cλ)C
−1/2
λ ∥B(H) + θ21∥(CY X − ĈY X)C

−1/2
λ ∥B(H)

+ aθ1θ2θ3∥P⊥
XC

1/2
λ ∥B(H) + θ21∥P⊥

Y C
1/2
λ ∥B(H)

where θ1 := ∥Ĉ−1/2
λ C

1/2
λ ∥, θ2 := ∥Ĉ1/2

λ C
−1/2
λ ∥, θ3 := ∥Ĉ−1

λ Cλ∥, and a is the constant of
Assumption 4.5.

Proof of Lemma E.1: Let θ1 := ∥Ĉ−1/2
λ C

1/2
λ ∥, θ3 := ∥Ĉ−1

λ Cλ∥. As in Lemma C.1 define
gKRR(Ĉ) := U(U∗ĈU + λI)−1U∗. We have

E(ÂKRR
m,λ)

1/2 = ∥ΦY |X − ÂKRR
m,λΦX∥B(L2

π,H)

≤ ∥ΦY |X −AλΦX∥B(L2
π,H) + ∥(Aλ − CY XgKRR(Ĉ))ΦX∥B(L2

π,H)

+ ∥(CY XgKRR(Ĉ)− ÂKRR
m,λ)ΦX∥B(L2

π,H)

≤ ∥ΦY |X −AλΦX∥B(L2
π,H)︸ ︷︷ ︸

A

+ ∥(Aλ − CY XgKRR(Ĉ))C
1/2∥︸ ︷︷ ︸

B

+ ∥(CY XgKRR(Ĉ)− ÂKRR
m,λ)C

1/2∥︸ ︷︷ ︸
C

(32)

where we used the polar decomposition Φ∗
X =WC1/2 for some partial isometry W : H → L2

π .
The first term is

∥ΦY |X −AλΦX∥ = ∥ΦXK∗
π − CY XC

−1
λ ΦX∥

≤ aλ1/2 + ∥(I − PH)ΦY |X∥

where we used the definition of ΦY |X and applied Lemma H.1.

The second term of our decomposition (32) can be bounded as follows:
It holds

B = ∥CY X(C−1
λ − gKRR(Ĉ))C

1/2∥
(by Lemma H.2:) ≤ a∥C(C−1

λ − gKRR(Ĉ))C
1/2∥

≤ a

∥C(C−1
λ − Ĉ−1

λ )C1/2∥︸ ︷︷ ︸
B1

+ ∥C(Ĉ−1
λ − gKRR(Ĉ))C

1/2∥︸ ︷︷ ︸
B2


We now bound the terms B1 and B2 separately.

B1 = ∥C(C−1
λ − Ĉ−1

λ )C1/2∥
= ∥CC−1

λ (Ĉλ − Cλ)Ĉ
−1
λ C1/2∥

≤ ∥CC−1
λ ∥∥(Ĉλ − Cλ)C

−1/2
λ ∥∥C1/2

λ Ĉ
−1/2
λ ∥∥Ĉ−1/2

λ C1/2∥

≤ θ21∥(Ĉλ − Cλ)C
−1/2
λ ∥

Let P̂λ := Ĉ
1/2
λ gKRR(Ĉ)Ĉ

1/2
λ . We recall that gKRR(Ĉ) = PXgKRR(Ĉ), so that

P̂ 2
λ = Ĉ

1/2
λ (gKRR(Ĉ)ĈλPX)gKRR(Ĉ)Ĉ

1/2
λ

= Ĉ
1/2
λ PXgKRR(Ĉ)Ĉ

1/2
λ

= P̂λ.
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This implies P̂ 2
λ = P̂λ = P̂ ∗

λ . Hence P̂λ is an orthogonal projection, and defining P̂⊥
λ = I − P̂λ it

holds ∥P̂⊥
λ ∥B(H) ≤ 1. We can thus bound B2 as follows:

B2 = ∥C(Ĉ−1
λ − gKRR(Ĉ))C

1/2∥

= ∥CĈ−1/2
λ (I − P̂λ)Ĉ

−1/2
λ C1/2∥

(by Lemma I.1) = ∥CĈ−1
λ P⊥

X Ĉ
1/2
λ (I − P̂λ)Ĉ

−1/2
λ C1/2∥

= ∥CĈ−1
λ ∥B(H)∥P⊥

XC
1/2
λ ∥B(H)∥C−1/2

λ Ĉ
1/2
λ ∥B(H)∥I − P̂λ∥∥Ĉ−1/2

λ C1/2∥B(H)

≤ θ1θ2θ3∥P⊥
XC

1/2
λ ∥

For the third term, due to Lemma C.1:

C = ∥(CY X − PY ĈY X)gKRR(Ĉ)C
1/2∥ (33)

≤ ∥(CY X − PY ĈY X)C
−1/2
λ ∥∥C1/2

λ Ĉ
−1/2
λ ∥B(H)∥P̂λ∥B(H)∥Ĉ−1/2

λ C1/2∥B(H) (34)

≤ θ21∥(CY X − PY ĈY X)C
−1/2
λ ∥B(H) (35)

≤ θ21

(
∥P⊥

Y C
1/2
λ ∥B(H) + ∥(CY X − ĈY X)C

−1/2
λ ∥B(H)

)
(36)

where we used Lemma J.7 for the last inequality.
Starting again from (32) and putting everything together, we get

E(ÂKRR
m,λ)

1/2 ≤ aλ1/2

+ aθ21∥(Ĉλ − Cλ)C
−1/2
λ ∥B(H)

+ θ21∥(CY X − ĈY X)C
−1/2
λ ∥B(H)

+ aθ1θ2θ3∥P⊥
XC

1/2
λ ∥B(H)

+ θ21∥P⊥
Y C

1/2
λ ∥B(H).

□

E.2 Excess risk rates for KRR

In order to control the terms appearing in our decomposition, we recall that Assumption 4.4 implies

deff(λ) ≤ Cβλ
−β where Cβ :=


c

1− β
, β < 1

K2 , β = 1
, (37)

where c is the constant of Assumption 4.4, see [8, Proposition 3 with b→ 1/β and β → c] and [16,
Lemma 11] which shows that the existence of a constant Cβ such that the first part of (37) holds
implies in return λi(C) ≲ i−1/β .

Proof of Theorem 4.6: By Lemma E.1 taking PX = PY , it holds almost surely

E(ÂKRR
m,λ)

1/2 ≤ aλ1/2 + aθ21∥(Ĉλ − Cλ)C
−1/2
λ ∥B(H) + θ21∥(CY X − ĈY X)C

−1/2
λ ∥B(H)

+ aθ1θ2θ3∥P⊥
XC

1/2
λ ∥B(H) + θ21∥P⊥

Y C
1/2
λ ∥B(H)

and we recall that θ1 := ∥Ĉ−1/2
λ C

1/2
λ ∥ and θ3 := ∥Ĉ−1

λ Cλ∥. We bound separately the terms
appearing in this expression.
Bound of θ1 and θ2. We control these term by bounding ∥C−1/2

λ (Ĉ −C)C
−1/2
λ ∥. By Lemma J.3

it holds for any δ′ ∈]0, 1[ and any λ ∈]0, ∥C∥B(H)] with probability 1− δ′∥∥∥C−1/2
λ (Ĉ − C)C

−1/2
λ

∥∥∥ ≤ 4cτβ

3nλτ
+

√
2cτβ

nλτ
where β = log

(
8K2

δ′λ

)
(38)

A sufficient condition to bound the right hand side of the previous expression by 1/4 is to have
nλτ > 32cτβ (in which cases both terms are bounded by 1/8). Assuming this holds, I−∥C−1/2

λ (Ĉ−
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C)C
−1/2
λ ∥ is invertible and we also have

θ22 = ∥Ĉ1/2
λ C

−1/2
λ ∥2 = ∥C−1/2

λ ĈλC
−1/2
λ ∥ = ∥I − C

−1/2
λ (C − Ĉ)C

−1/2
λ ∥

≤ 1 + ∥C−1/2
λ (C − Ĉ)C

−1/2
λ ∥

≤ 1.25

and thus θ2 ≤ 1.12

while θ21 = ∥Ĉ−1/2
λ C

1/2
λ ∥2 = ∥(C−1/2

λ ĈλC
−1/2
λ )−1∥

(i)

≤ (1− ∥C−1/2
λ (Ĉ − C)C

−1/2
λ ∥)−1

≤ 1.34

and thus θ1 ≤ 1.16

where (i) can be obtained by taking the Neumann expansion of I − ∥C−1/2
λ (Ĉ − C)C

−1/2
λ ∥.

Bound for θ3. By Lemma J.5 it holds with probability 1− δ′

∥(C − Ĉ)C−1
λ ∥op ≤

2K
√
cτ log(2/δ′)

λ(τ+1)/2n
+

√
2K2 tr(C−2

λ C) log(2/δ′)

n
(39)

Both terms in the above rhs are bounded by 1/4 provided

λ(τ+1)/2n ≥ 8K
√
cτ log(2/δ′)

n ≥ 32K2λ−(1+β) log(2/δ′)

where we used tr(C−2
λ C) =

∑
λi(C)(λi(C) + λ)−2 ≤ λ−1 tr(C−1

λ C) ≤ Cβλ
−(1+β). When this

is the case, we have ∥(C − Ĉ)C−1
λ ∥op ≤ 1/2 < 1 and the operator I − (Ĉλ −Cλ)C

−1
λ is invertible.

θ3 = ∥(ĈλC
−1
λ )−1∥ = ∥(I − (Ĉλ − Cλ)C

−1
λ )−1∥

(i)

≤ (1− ∥(Ĉλ − Cλ)C
−1
λ ∥B(H))

−1

≤ 2.

where (i) can be obtained by considering the Neumann expansion of I − (Ĉλ − Cλ)C
−1
λ .

Bound for ∥P⊥
XC

1/2
λ ∥. By Lemma J.6, provided λ ∈]0, ∥C∥B(H)] it holds with probability 1− δ′

∥P⊥
XC

1/2
λ ∥B(H) ≤

√
3λ

provided m ≥ max(67, 5 ess supx∼π∥C
−1/2
λ ϕ(x)∥2) log 4K2

λδ′ , which by Lemma H.3 is ensured if
m ≥ max(67, 5 cτ

λτ ) log
4K2

λδ′ .
Bound for ∥(C − Ĉ)C

−1/2
λ ∥ and ∥(CY X − ĈY X)C

−1/2
λ ∥. By Lemma J.4, for any δ′ ∈]0, 1[,

each of the following events holds with probability 1− 2δ′:

max(∥(C − Ĉ)C
−1/2
λ ∥, ∥(CY X − ĈY X)C

−1/2
λ ∥) ≤

2K
√
cτ log(2/δ′)

λτ/2n
+

√
2K2deff(λ) log(2/δ′)

n
(40)

By Eq. (37) we have deff(λ) ≤ Cβλ
−β .

Choosing δ′ = δ/5, we get via a union bound with probability 1− δ that θ1θ2θ3 ≤ 2.6, θ21 ≤ 1.34
and

E(ÂKRR
m,λ)

1/2 ≤ aλ1/2 + 1.34(a+ 1)

(
2K

√
cτ log(2/δ′)

λτ/2n
+

√
2K2Cβ log(2/δ′)

nλβ

)
+ (2.6a+ 1.34)

√
3λ1/2

≤ c1λ
1/2 + c2λ

−τ/2n−1 + c3λ
−β/2n−1/2

where: c1 := (5.5a+ 2.33)

c2 := 1.34(a+ 1)2K
√
cτ log(2/δ′)

c3 := 1.34(a+ 1)
√
2K2Cβ log(2/δ′)
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for any λ and m satisfying the constraints

λ > n−1/τ (32cτ )
1/τ log

(
8K2

δ′λ

)1/τ
λ ≥ n−2/(τ+1)(8K

√
cτ log(2/δ′))

2/(τ+1)

λ ≥ n−1/(1+β)(32K2 log(2/δ′))1/(1+β)

λ ∈]0,K2].

m ≥ max(67, 5
cτ
λτ

) log
4K2

λδ′
(uniform sampling)

(41)

We pick λ := cλn
−1/(1+β) which is asymptotically the saturating constraint (given that 1/(1 +

β) < 1 < 2/(τ + 1) ≤ 1/τ ), where cλ is a constant choosen to enforce the following equations
(which are sufficient conditions for eq. (41) to hold):

cτλn
1−τ/(1+β) > (32cτ ) log

(
8K2n1/(1+β)

δ′cλ

)
c
(τ+1)/2
λ n1−(τ+1)/(2(1+β)) ≥ 8K

√
cτ log(2/δ′)

cλ ≥ (32K2 log(2/δ′))1/(1+β)

cλn
−1/(1+β) ≤ K2

(42)

As 1− (τ + 1)/(2(1 + β)) > 0, a sufficient condition for the second equation is

cλ ≥ (8K
√
cτ log(2/δ′))

2/(τ+1).

Assuming cτ ≥ 8K2, a sufficient condition to satisfy the first constraint is

cτλn
1−τ/(1+β) > (32cτ )2max(log

(
n1/(1+β)

)
, log

(
(δ′)−1

)
)

which is in particular ensured (noting that log(n)/nν ≤ 1/(νe) for any n, ν > 0) whenever

cλ > (64cτ max((e(1 + β − τ))−1, log
(
1/δ′
)
))1/τ

Noting that 1 + β − τ ≤ 1, we get that

cλ > (64cτ (e(1 + β − τ))−1 log
(
1/δ′
)
)1/τ

is also sufficient. We recall that 1/(1 + β) < 1 < 2/(τ + 1) ≤ 1/τ , so that we can choose

cλ := log(2/δ′)1/τ max((32K2)1/(1+β), (8K
√
cτ )

2/(τ+1), (64cτ (e(1 + β − τ))−1)1/τ , 8K2)

while the last constraint n ≥ (cλ/K
2)1+β is satisfied by assumption.

E(ÂKRR
m,λ)

1/2 ≤ c1λ
1/2 + c2λ

−τ/2n−1 + c3λ
−β/2n−1/2

≤ c1c
1/2
λ n−1/(2(1+β)) + c2c

−τ/2
λ nτ/(2(1+β))−1 + c3c

−β/2
λ nβ/(2(1+β))−1/2

≤ c1c
1/2
λ n−1/(2(1+β)) + c2c

−τ/2
λ n−(1+2β+(1−τ))/(2(1+β)) + c3c

−β/2
λ n−1/(2(1+β))

≤ (c1c
1/2
λ + c2c

−τ/2
λ + c3c

−β/2
λ )n−1/(2(1+β)).

which gives the claimed result. The last constraint (on m) is satisfied by the assumptions of the
lemma. □
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F Excess risk of the Nyström RRR estimator

Recalling (30), NyströmRRR estimator is of the form ÂRRR
m,λ = JB̃Kr(C̃λ)

−1/2, where B̃ :=

C̃Y X(C̃λ)
−1/2 for C̃Y X := PY ĈY XPX and C̃λ := PXĈPX + λI . While the population ver-

sion is ARRR
λ := JBKrC

−1/2
λ where B := CY X(Cλ)

−1/2.

In this section we follow the approach in [27] and decompose the operator norm excess risk in the
following way:

E(ÂRRR
m,λ)

1/2=∥ΦY |X−AλΦX∥B(L2
π,H)+∥(Aλ−ARRR

λ )ΦX∥B(L2
π,H)+∥(ARRR

λ −ÂRRR
m,λ)ΦX∥B(L2

π,H)

Then, recalling that Aλ = CY XC
−1
λ and ÂKRR

m,λ = B̃C̃
−1/2
λ , we also have ARRR

λ = PBAλ and
ÂRRR

m,λ = PB̃Â
KRR
m,λ, where PB and PB̃ are orthogonal projectors onto leading r left singular vectors

of B and B̃, respectively.

Thus,

E(ÂRRR
m,λ)

1/2 ≤ a λ1/2 + σr+1(ΦY |X) + ∥(ARRR
λ − ÂRRR

m,λ)ΦX∥B(H)

= a λ1/2 + σr+1(ΦY |X) + ∥(PBAλ − PB̃Â
KRR
m,λ)ΦX∥B(H)

≤ a λ1/2 + σr+1(ΦY |X) + ∥((PB − PB̃)AλΦX∥B(H) + ∥PB̃(Aλ − ÂKRR
m,λ)ΦX∥B(H)

≤ a λ1/2 + σr+1(ΦY |X) +K
∥B̃B̃∗ −BB∗∥B(H)

σ2
r(B)− σ2

r+1(B)
+ ∥(Aλ − ÂKRR

m,λ)ΦX∥B(H)

where the last inequality is due to ∥Aλ∥ ≤ a and [27, Proposition 4].

Recalling Lemma E.1, we observe that

E(ÂRRR
m,λ)

1/2 ≤ σr+1(ΦY |X) +K
∥B̃B̃∗ −BB∗∥
σ2
r(B)− σ2

r+1(B)
+ a λ1/2 + ∥(Aλ − ÂKRR

m,λ)ΦX∥︸ ︷︷ ︸
≤r.h.s. of the bound in Lemma E.1

Therefore, to prove Lemma 4.7 for the RRR estimator we just need to bound ∥B̃B̃∗ − BB∗∥B(H).
To that end, observe that, after some algebra, one obtains

B̃B̃∗−BB∗=Aλ(C̃Y X−CY X)∗+(C̃Y X−CY X)A∗
λ−Aλ(C̃λ−Cλ)A

∗
λ+(Ãλ−Aλ)C̃λ(Ãλ−Aλ)

∗,

and, consequently,

∥B̃B̃∗ −BB∗∥B(H) ≤ 2a∥C̃Y X − CY X∥B(H) + a2∥PXĈPX − C∥B(H)

+ ∥C−1/2
λ C̃λC

−1/2
λ ∥B(H)∥(Ãλ −Aλ)C

1/2
λ ∥2B(H),

follows using that ∥Aλ∥B(H) ≤ a.

On the other hand,

∥C̃Y X − CY X∥B(H) ≤ ∥PY (ĈY X − CY X)PX∥B(H) + ∥P⊥
Y CY XPX∥B(H) + ∥CY XP

⊥
X ∥B(H),

which implies that

∥C̃Y X − CY X∥B(H) ≤ ∥ĈY X − CY X∥B(H) + 2 aK ε1,

where ε1 := max{∥P⊥
XC

1/2∥B(H), ∥P⊥
Y C

1/2∥B(H)}. Similarly, we obtain

∥C̃λ − Cλ∥B(H) ≤ ∥Ĉ − C∥B(H) + 2K ε1. (43)

But, ε1 can be bounded by Lemma J.6. Indeed, provided λ ∈]0, ∥C∥B(H)], it holds with probability
1− δ′

ε1 ≤
√
3λ

provided m ≥ max(67, 5 ess supx∼π∥C
−1/2
λ ϕ(x)∥2) log 4K2

λδ′ , which by Lemma H.3 is ensured if
m ≥ max(67, 5 cτ

λτ ) log
4K2

λδ′ .
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Additionally,

∥C−1/2
λ C̃λC

−1/2
λ ∥B(H) ≤ ∥C−1/2

λ PXĈλPXC
−1/2
λ ∥B(H) + λ∥C−1/2

λ P⊥
XC

−1/2
λ ∥B(H)

≤ θ22 ∥Ĉ
−1/2
λ PXĈλPXC

−1/2
λ ∥B(H) + 1

≤ θ22 ∥Ĉ
1/2
λ PXĈ

−1
λ PXC

1/2
λ ∥B(H) + 1

≤ θ22 ∥Ĉ
1/2
λ PX(PXĈλPX)†PXC

1/2
λ ∥B(H) + 1,

implies that
∥C−1/2

λ C̃λC
−1/2
λ ∥B(H) ≤ θ22 + 1 ≤ 2.25, (44)

provided, as above, that nλτ > 32cτβ.

Therefore, setting ε0 := max{a∥ĈY X − CY X∥B(H), a
2∥Ĉ − C∥B(H)}, for all i ∈ [m] we have∣∣∣σ2

i (B̃)− σ2
i (B)

∣∣∣ ≤ ∥B̃B̃∗ −BB∗∥ ≤ 3ε0 + 6.93K a2λ1/2 + 2.25 ε22, (45)

where ε2 := ∥(Aλ − ÂKRR
m,λ)C

1/2
λ ∥ is the variance of Nyström KRR estimator, and conclude that

E(ÂRRR
m,λ)

1/2 ≤ σr+1(ΦY |X) +K
3ε0 + 6.93K a2 λ1/2 + 2.25 ε22

σ2
r(B)− σ2

r+1(B)
+ a λ1/2 + ε2.

Therefore, the proof of Lemma 4.7 for RRR estimator directly follows from the bound on a λ1/2 + ε2
given in the proof of Theorem 4.6, and the fact that, see e.g. [26], ε0 ≲ n−1/2 ≲ λ1/2.

G Excess risk of the Nyström PCR estimator

Recalling Eq. (27), NyströmPCR estimator is of the form

ÂPCR
m = PY ĈY XJPXĈPXK†r = C̃Y XJC̃λKr = ÂKRR

m,λPC̃λ
,

for λ = 0 and with PC̃λ
being the orthogonal projector onto leading r eigenspace of C̃λ. So, to prove

Lemma 4.7 for PCR estimator, denote ÂPCR
m,λ := ÂKRR

m,λPC̃λ
for λ ≥ 0, and let us define the population

version APCR
λ = AλPCλ

, where PCλ
being the orthogonal projector onto leading r eigenspace of Cλ.

As in the previous section we start with decomposition

E(ÂPCR
m )1/2 =∥ΦY |X −AλΦX∥B(L2

π,H) + ∥(Aλ −APCR
λ )ΦX∥B(L2

π,H) +

∥(APCR
λ − ÂPCR

m,λ)ΦX∥B(L2
π,H) + ∥(ÂPCR

m,λ − ÂPCR
m )ΦX∥B(L2

π,H).

The first and the second term are easily bounded by ∥ΦY |X −AλΦX∥B(L2
π,H) ≤ a λ1/2, and

∥(Aλ −APCR
λ )ΦX∥B(L2

π,H) = ∥Aλ(I − PCλ
)ΦX∥B(L2

π,H)

≤ a ∥(I − PCλ
)C1/2∥B(H) ≤ a σr+1(ΦX).

For the third term, start by observing that

∥(APCR
λ − ÂPCR

m,λ)ΦX∥B(L2
π,H) = ∥(AλPCλ

− ÂKRR
m,λPC̃λ

)C1/2∥B(H)

≤ ∥Aλ(PCλ
− PC̃λ

)C1/2∥B(H) + ∥(Aλ − ÂKRR
m,λ)PC̃λ

C1/2∥B(H)

≤ aK ∥PCλ
− PC̃λ

∥B(H) + ∥(Aλ − ÂKRR
m,λ)PC̃λ

C1/2∥B(H)

≤ aK
∥C̃λ − Cλ∥B(H)

σ2
r(ΦX)− σ2

r+1(ΦX)
+ ∥(Aλ − ÂKRR

m,λ)PC̃λ
C1/2∥B(H)

≤ K
ε0 + 2 aK ε1

σ2
r(ΦX)− σ2

r+1(ΦX)
+ ∥(Aλ − ÂKRR

m,λ)PC̃λ
C1/2∥B(H)
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where the second last inequality is due to [27, Proposition 4] and the last one uses Eq. (43). Moreover,
we have that

∥(Aλ − ÂKRR
m,λ)PC̃λ

C1/2∥B(H) ≤ ∥(Aλ − ÂKRR
m,λ)C

1/2
λ ∥B(H) ∥C−1/2

λ C̃
1/2
λ ∥B(H) ∥C̃−1/2

λ PC̃λ
C1/2∥B(H)

≤ ε2

√
1 + θ22 ∥PC̃λ

C̃
−1/2
λ C1/2∥B(H)

≤ ε2

√
1 + θ22 ∥C

1/2
λ C̃

−1/2
λ ∥B(H),

where we have used Eq. (44) and the fact that PC̃λ
is the spectral projector of C̃−1/2

λ . Therefore, due
to

∥C1/2
λ C̃

−1/2
λ ∥B(H) = ∥C1/2

λ [P⊥
X + PX ]C̃

−1/2
λ ∥B(H) ≤ ∥C1/2

λ PXC̃
−1/2
λ ∥B(H) + ∥C1/2

λ P⊥
X C̃

−1/2
λ ∥B(H)

≤ θ2∥Ĉ1/2
λ PXC̃

−1/2
λ ∥B(H) + ∥C1/2

λ P⊥
X ∥B(H)∥C̃−1/2

λ ∥B(H)

≤ θ2∥Ĉ1/2
λ PX(PXĈλPX)†PXĈ

1/2
λ ∥1/2B(H) + ∥C1/2

λ P⊥
X ∥B(H)λ

−1/2

≤ θ2 + ε1λ
−1/2

we obtain
∥(Aλ − ÂKRR

m,λ)PC̃λ
C1/2∥B(H) ≤ ε2

(
1.68 + 1.5λ−1/2 ε1

)
,

provided that nλτ > 32cτβ.

Finally for the last term, observe that JC̃λK†r and JC̃0K†r share the same eigenvectors, and hence
JC̃0K†r − JC̃λK†r = λJC̃λC̃0K†r. Hence, it holds that

∥(ÂPCR
m,λ − ÂPCR

m )ΦX∥B(L2
π,H) = ∥C̃Y X(JC̃λK†r − JC̃0K†r)C

1/2∥B(H) = λ∥C̃Y XC̃
−1
λ JC̃0K†rC

1/2∥B(H)

≤ λ∥C̃Y XC̃
−1
λ JC̃0K†rC̃

1/2
λ ∥B(H)∥C̃−1/2

λ C
1/2
λ ∥B(H)

= λ∥C̃Y XC̃
−1/2
λ JC̃0K†r∥B(H)∥C̃−1/2

λ C
1/2
λ ∥B(H)

= λ ∥JC̃0K†r∥B(H) ∥B̃∥B(H) ∥C̃−1/2
λ C

1/2
λ ∥B(H).

Now, recalling Eq. (45), we can bound

∥B̃∥2B(H) ≤ ∥C−1/2
λ C∗

Y XCY XC
−1/2
λ ∥B(H) + ∥BB∗ − B̃B̃∗∥B(H)

≤ a2K2 + 3ε0 + 6.93K a2λ1/2 + 2.25 ε22,

and,

λ1/2∥JC̃0K†r∥B(H) =
λ1/2

λr(PXĈPX)
≤ λ1/2

λr(C)− ∥Cλ − C̃λ∥B(H)
≤ λ1/2

σ2
r(ΦX)− ∥Ĉ − C∥B(H) − 2K ε1

.

Thus, consequently, we obtain

∥(ÂPCR
m,λ − ÂPCR

m )ΦX∥B(L2
π,H) ≤λ1/2

(
θ2 + ε1λ

−1/2
) (

a2K2 + 3ε0 + 6.93K a2λ1/2 + 2.25 ε22

)
·

λ1/2

σ2
r(ΦX)− ∥Ĉ − C∥B(H) − 2K ε1

.

To conclude, observe that r > n
1

β(1+β) due to Assumption 4.4 implies that σr+1(ΦX) ≲ n−
1

2(1+β) .

Therefore, collecting all the terms, under the assumptions of Lemma 4.7 we obtain

E(ÂPCR
m )1/2 ≲ cPCR n

− 1
2(1+β) ,

where cPCR = (σ2
r(ΦX)− σ2

r+1(ΦX))−1 is the problem dependant constant.

H Auxiliary results
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Lemma H.1 ([27, Proposition 2] with α = 1): Under Assumption 4.2 it holds

∥ΦXK∗
π − CY XC

−1
λ ΦX∥ ≤ aλ1/2.

Lemma H.2: Let A be a bounded operator. Under Assumptions 4.1 and 4.5, it holds

∥CY XA∥ ≤ a∥CA∥ (46)

Proof of Lemma H.2: Note that under Assumption 4.5, as CXY CY X ≼ a2C2 it also holds
A∗CXY CY XA ≼ a2AC2A and thus:

∥CY XA∥ = ∥A∗CY XCY XA∥1/2

≤ a∥A∗C2A∥1/2

= a∥CA∥.

□

The next lemma is a consequence of Assumption 4.3 and will be used in our concentration inequalities.

Lemma H.3: Under Assumption 4.3, it holds π-almost surely for any ν:∥∥∥C−(1−ν)/2
λ ϕ(x)

∥∥∥2 ≤ cτλ
−[τ−ν]+K2[ν−τ ]+ .

The two following corollaries can be obtained picking ν = 0 and ν = −1:∥∥∥C−1/2
λ ϕ(x)

∥∥∥2 ≤ cτ
λτ

and
∥∥∥C−1

λ ϕ(x)
∥∥∥2 ≤ cτ

λτ+1
.

Proof of Lemma H.3: By [16, Theorem 9], it holds cτ := ∥kτπ∥2∞ = ess supx∼π

∑
i∈I µ

τ
i |ei(x)|2

(where (ei) is defined in Appendix A.3, and we recall that (
√
µiei)i∈N is an orthonormal basis of H.

Denoting µi := λi(C), it holds

∥∥∥C−(1−ν)/2
λ ϕ(x)

∥∥∥2 =

∥∥∥∥∥∥
∑

i∈I

(µi + λ)−(1−ν)/2(
√
µiei)⊗ (

√
µiei)

ϕ(x)
∥∥∥∥∥∥
2

=

∑
i∈I

µiei(x)
2(µi + λ)−1+ν


=
∑
i∈I

µ1−τ
i (µi + λ)

−1+ν
µτ
i ei(x)

2

=
∑
i∈I

(
µi

µi + λ

)1−τ

(µi + λ)
ν−τ

µτ
i ei(x)

2

≤
∑
i∈I

(µi + λ)−(τ−ν)µτ
i ei(x)

2

≤ cτλ
−[τ−ν]+K2[ν−τ ]+ .

where we used sup |µi| ≤ K2. □
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I Deterministic sketching results

Lemma I.1: Denoting R := I − Ĉ
1/2
λ gKRR(Ĉ)Ĉ

1/2
λ , it holds

RĈ
1/2
λ = RĈ

1/2
λ P⊥

X .

Proof of Lemma I.1: This is a direct consequence of the fact that gKRR(Ĉ)ĈλPX = PX :

RĈ
1/2
λ PX = Ĉ

1/2
λ PX − Ĉ

1/2
λ gKRR(Ĉ)ĈλPX = 0.

□

J Concentration results

J.1 Generic concentration lemmas

All our concentration results derive from two versions of the Bernstein inequality. We first state an
inequality for sums of random variables in a Hilbert space based on [66, Theorem 3.3.4], which itself
derives from a result of [44].

Lemma J.1: Let (Ai)1≤i≤n be i.i.d. copies of a random variable A in a separable Hilbert space
(H, ∥·∥). Assume EA = µ and ∃σ > 0,∃L > 0,∀p ≥ 2,E∥A− µ∥p ≤ 1

2p!σ
2Lp−2. Then for any

δ ∈]0, 1[ it holds:

P


∥∥∥∥∥∥ 1n

n∑
i=1

Ai − µ

∥∥∥∥∥∥ ≤ 2L log(2/δ)

n
+

√
2σ2 log(2/δ)

n

 ≥ 1− δ (47)

The assumption on the moments holds in particular when ess sup∥A∥ ≤ L/2 and E[∥A∥2] ≤ σ2.

Proof of Lemma J.1: See proof of [9, Lemma E.3] for a precise derivation based on [66, Theorem
3.3.4]. □

We now state a version of the Bernstein concentration inequality for self-ajoint operators in operator
norm, which is a restatement of [31, Lemma 24]. In the following, we denote reff(A) := tr(A)/∥A∥
the effective rank of a nonnegative definite operator A.

Lemma J.2 (Bernstein for self-ajoint operators acting on a Hilbert): Let H be a separable
Hilbert space andAi be i.i.d. copies of a random variableA taking values in the space of self-adjoint
Hilbert-Schmidt operators on H . Assume EA = 0, ess sup∥A∥op ≤ c for some c > 0 (where ∥·∥op
denotes the operator norm) and that there exists a positive semi-definite trace class operator V such
that E[A2] ≼ V . Then for any δ ∈]0, 1[ and n ≥ 1 it holds

P


∥∥∥∥∥∥ 1n

n∑
i=1

Ai

∥∥∥∥∥∥
op

≥ 2cβ

3n
+

√
2∥V ∥β
n

 ≤ δ where β = log
(

4 reff(V )
δ

)
(48)

Proof of Lemma J.2: See [31, Appendix B.7, Lemma 24]. □
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J.2 Applied concentration lemmas

Lemma J.3: Let Assumption 4.1 hold. Let δ ∈]0, 1[. Then for i.i.d. samples (xi, yi)1≤i≤n and any
λ ∈]0, ∥C∥B(H)] it holds

P

[∥∥∥C−1/2
λ (Ĉ − C)C

−1/2
λ

∥∥∥
B(H)

≥ 4cτβ

3nλτ
+

√
2cτβ

nλτ

]
≤ δ where β = log

(
8K2

δλ

)
(49)

Proof of Lemma J.3: We apply Lemma J.2 on the random variables Ai = ξ(Xi) ⊗ ξ(Xi) −
C

−1/2
λ CC

−1/2
λ where ξ(Xi) := C

−1/2
λ ϕ(Xi). It holds

ess sup∥Ai∥B(H) ≤ 2 ess sup∥ξ(Xi)∥2

≤ 2cτ
λτ

. (by Lemma H.3)

E[A2
i ] = E[∥ξ(Xi)∥2ξ(Xi)ξ(Xi)

∗]− (C
−1/2
λ CC

−1/2
λ )2

≼ E[∥ξ(Xi)∥2ξ(Xi)ξ(Xi)
∗]

≼
cτ
λτ

E[ξ(Xi)ξ(Xi)
∗]

=
cτ
λτ
CC−1

λ

Thus applying Lemma J.2 with c = 2cτ
λτ and V = cτ

λτ CC
−1
λ , we get

P


∥∥∥∥∥∥ 1n

n∑
i=1

Ai

∥∥∥∥∥∥ ≥ 4cτβ

3nλτ
+

√
2cτβ

λτn

 ≤ δ where β = log
(

8K2

δλ

)
(50)

where we used the fact that ∥CC−1
λ ∥B(H) ≤ 1 and controlled the effective rank using tr(CC−1

λ ) ≤
K2/λ and ∥CC−1

λ ∥B(H) = ∥C∥B(H)/(∥C∥B(H) + 1) ≥ 1/2 because λ ≤ ∥C∥B(H) by assumption.
□

Lemma J.4: Let Assumptions 4.1 and 4.3 hold. Let δ ∈]0, 1[. Then for i.i.d. samples (xi, yi)1≤i≤n

we get

P
[
∥(C − Ĉ)C

−1/2
λ ∥op ≤ ϵ(λ, δ)

]
≥ 1− δ (51)

and P
[
∥(CY X − ĈY X)C

−1/2
λ ∥op ≤ ϵ(λ, δ)

]
≥ 1− δ (52)

where ϵ(λ, δ) :=
2K

√
cτ log(2/δ)

λτ/2n
+

√
2K2deff(λ) log(2/δ)

n
(53)

Proof of Lemma J.4: We first write the proof for the eq. (51). For this result, we use the
fact that ∥(C − Ĉ)C

−1/2
λ ∥B(H) ≤ ∥(C − Ĉ)C

−1/2
λ ∥HS and bound the Hilbert-Schmidt norm.

As (HS(H), ∥·∥HS(H)) is a Hilbert space, we apply Lemma J.1 on the random variables Ai =

ϕ(xi)⊗ ξ(xi) where ξ(x) = C
−1/2
λ ϕ(x).

ess sup∥A∥HS = ess sup∥ϕ(x)∥∥ξ(x)∥

≤
K
√
cτ

λτ/2
(by assumption 4.1 and lemma H.3)

E[∥A∥2HS] = E[∥ϕ(x)∥2∥ξ(x)∥2]
≤ K2deff(λ)
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Thus applying Lemma J.1 with L =
K

√
cτ

λτ/2 and σ2 = K2deff(λ) gives

P


∥∥∥∥∥∥ 1n

n∑
i=1

Ai − µ

∥∥∥∥∥∥
HS

≤
2K

√
cτ log(2/δ)

λτ/2n
+

√
2K2deff(λ) log(2/δ)

n

 ≥ 1− δ.

This yields the desired result via the inequality between operator and Hilbert-Schmidt norms.
For the bound eq. (52) on the cross-covariance, we take Ai = ϕ(yi)⊗ ξ(xi) but the rest of the proof
is inchanged. □

Lemma J.5: Let Assumptions 4.1 and 4.3 hold. Let δ ∈]0, 1[. Then for i.i.d. samples (xi, yi)1≤i≤n

we get

P

∥(C − Ĉ)C−1
λ ∥op ≤

2K
√
cτ log(2/δ)

λ(τ+1)/2n
+

√
2K2 tr(C−2

λ C) log(2/δ)

n

 ≥ 1− δ. (54)

Proof of Lemma J.5: For this result, we use the fact that ∥(C − Ĉ)C−1
λ ∥B(H) ≤ ∥(C − Ĉ)C−1

λ ∥HS
and bound the Hilbert-Schmidt norm. As (HS(H), ∥·∥HS(H)) is a Hilbert space, we apply Lemma J.1
on the random variables Ai = ϕ(xi)⊗ ω(xi) where ω(x) = C−1

λ ϕ(x).

ess sup∥A∥HS = ess sup∥ϕ(x)∥∥ω(x)∥

≤
K
√
cτ

λ(τ+1)/2
(by assumption 4.1 and lemma H.3)

E[∥A∥2HS] = E[∥ϕ(x)∥2∥ω(x)∥2]
≤ K2E[tr(C−2

λ ϕ(x)ϕ(x)∗)]

= K2 tr(C−2
λ C)

Thus applying Lemma J.1 with L =
K

√
cτ

λ(τ+1)/2 and σ2 = K2 tr(C−2
λ C) gives

P


∥∥∥∥∥∥ 1n

n∑
i=1

Ai − µ

∥∥∥∥∥∥
HS

≤
2K

√
cτ log(2/δ)

λ(τ+1)/2n
+

√
2K2 tr(C−2

λ C) log(2/δ)

n

 ≥ 1− δ.

This yields the desired result via the inequality between operator and Hilbert-Schmidt norms. □

J.3 Probabilistic inequalities

Lemma J.6 (Uniform Nyström approximation): Let Assumption 4.1 hold. Let P : H → H denote
the orthogonal projection on span

{
ϕ(x̃j)

∣∣ 1 ≤ j ≤ m
}

, where the landmarks (x̃j)1≤j≤m are
drawn i.i.d. from the empirical data. Then for any λ ∈]0, ∥Cλ∥B(H)] we have

∥P⊥C
1/2
λ ∥2B(H) ≤ 3λ

with probability at least 1− δ provided

m ≥ max(67, 5 ess sup∥C−1/2
λ ϕ(x)∥2) log 4K2

λδ
.

33



J.4 Concentration lemmas for the sketched operators

Lemma J.7: It holds almost surely

∥(CY X − PY ĈY X)C
−1/2
λ ∥ ≤ ∥P⊥

Y C
1/2
λ ∥+ ∥(CY X − ĈY X)C

−1/2
λ ∥

Proof of Lemma J.7: It holds

CY X − PY ĈY X = CY X − PY CY X + PY CY X − PY ĈY X

= P⊥
Y CY X + PY (CY X − ĈY X)

Thus

∥(CY X − PY ĈY X)C
−1/2
λ ∥ = ∥(P⊥

Y CY X + PY (CY X − ĈY X))C
−1/2
λ ∥

≤ ∥P⊥
Y CY XC

−1/2
λ ∥+ ∥PY (CY X − ĈY X)C

−1/2
λ ∥

≤ ∥P⊥
Y C

1/2
λ ∥∥C−1/2

λ CY XC
−1/2
λ ∥+ ∥(CY X − ĈY X)C

−1/2
λ ∥

Eventually it holds ∥C−1/2
λ CY XC

−1/2
λ ∥ ≤ 1. Indeed, as π is invariant, it holds that

∥Kπ∥ = sup
f∈L2

π :∥f∥L2
π
≤1

∫
x

∣∣∣∣∫ f(y)p(x, dy)

∣∣∣∣2 dπ(x) ≤ 1.

and denoting ΦX = C1/2U the polar decomposition of ΦX for some partial isometry U : L2
π → H,

and using Φ∗
Y |X = KπΦ

∗
X , we get

∥C−1/2
λ CY XC

−1/2
λ ∥ = ∥C−1/2

λ ΦY |XΦ∗
XC

−1/2
λ ∥

≤ ∥C−1/2
λ C1/2∥∥UK∗

πU
∗∥∥C1/2C

−1/2
λ ∥

≤ 1.

□

J.5 Concentration for mixing processes

Lemma J.8 (Kostic et al. [26, Lemma 1]): Let X be strictly stationary with values in a normed
space (X , ∥·∥) and assume n = 2pk with p, k ∈ N. Let Z1, . . . , Zp be p independent copies of
Z1 =

∑k
i=1Xi. Then for s > 0:

P
[∥∥∥ n∑

i=1

Xi

∥∥∥ > s
]
≤ 2P

[∥∥∥ p∑
j=1

Zj

∥∥∥ > s/2
]
+ 2(p− 1)βX(k).
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