METODI DI SIMULAZIONE APPLICATI ALLA FISICA

METODI DI SIMULAZIONE APPLICATI ALLA FISICA

_
iten
Codice
98890
ANNO ACCADEMICO
2020/2021
CFU
6 cfu al 3° anno di 8758 FISICA (L-30) GENOVA

6 CFU al 1° anno di 9012 FISICA (LM-17) GENOVA

6 CFU al 2° anno di 9012 FISICA (LM-17) GENOVA

SETTORE SCIENTIFICO DISCIPLINARE
FIS/01
LINGUA
Italiano
SEDE
GENOVA (FISICA )
periodo
2° Semestre
materiale didattico

PRESENTAZIONE

Il corso fornisce un'introduzione a tecniche di simulazione basate sul metodo di Monte Carlo per la fisica della materia e per la fisica delle interazioni fondamentali.

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

Obiettivo del corso è fornire gli strumenti di comprensione, sia sotto il profilo matematico, sia sotto quello fisico, della simulazione Monte Carlo applicata a probemi di fisica della meteria e di fisica delle interazioni fondamentali

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

Il corso si prefigge di fornire le conoscenze di base sulle tecniche di simulazione basate sul metodo di Monte Carlo e di applicarle alla fisica della materia e alla fisica delle interazioni fondamentali.

Per la fisica della materia si acquisiranno competenze in:

    - Simulazione con catene di Markov ed, in particolare, con l'algoritmo di Metropolis

    - Simulazione di transizioni di fase nel gas reticolare 

    - Monte Carlo a tempo continuo per simulazione all'equilibrio e fuori equilibrio.

    - Simulazione della crescita di aggregati. Frattali.

Per la fisica delle interazioni fondamentali si acquisiranno competenze in:

    -  Simulazione del trasporto delle particelle nella materia

    -  Simulazione dell'interazione e del decadimento di particelle in spazio delle fasi

    -  Simulazione parametrica di un rivelatore

    -  Simulazione di un esperimento composto da più rivelatori

 

PREREQUISITI

Non ci sono vincoli formali, ma è consigliata una buona conoscenza di programmazione (acquisita nei corsi obbligatori).

Modalità didattiche

Lezioni frontali ed esercitazioni pratiche.

PROGRAMMA/CONTENUTO

- Introduzione al metodo di Monte Carlo. Metodi di campionamento: reiezione, inversione. Riduzione della varianza. Campionamento di importanza.

- Catene di estrazioni su spazi finiti. Catene di Markov. Condizione di omogeneità. Requisiti per la convergenza delle catene di Markov. Bilancio dettagliato. Algoritmo di Metropolis. Monte Carlo step.

- Simulazione del gas reticolare in due dimensioni con interazioni repulsive usando l'algoritmo di Metropolis. Transizioni di fase ordine-disordine. Parametro d'ordine.

- Monte Carlo a tempo continuo per simulazioni all'equilibrio. Monte Carlo a tempo continuo per simulazioni fuori equilibrio. Transition State Theory.

- Simulazione della crescita di aggregati bidimensionali con il Monte Carlo a tempo continuo. Modello DDA. Leggi di scala per le densità di atomi liberi e di aggregati.  Generalità sui frattali e definizione di dimesionalità non intera. Misura della dimensione frattale degli aggregati.

- Richiami su interazione particelle-materia. Simulazione del trasporto delle particelle nella materia. Simulazione dettagliata e condensata.

- Metodi di riduzione della varianza nel trasporto di particelle nella materia

- Simulazione del decadimento o dell'interazione tra particelle in spazio delle fasi. Decadimento a due corpi. Decadimento a tre corpi. Fattorizzazione.

- Simulazione parametrica di rivelatori e di esperimenti. Applicazioni a esperimenti passati e presenti. 

 

TESTI/BIBLIOGRAFIA

 Dispense e slides disponibili su aulaweb.

 

DOCENTI E COMMISSIONI

Ricevimento: Ogni giorno previa richiesta di appuntamento.

Ricevimento: Ricevimento da concordare previo contatto telefonico/e-mail.  Fabrizio Parodi Dipartimento di Fisica, via Dodecaneso 33, 16146 Genova piano 8, studio 823 telefono 010 3536657 e-mail: fabrizio.parodi@ge.infn.it  

LEZIONI

Modalità didattiche

Lezioni frontali ed esercitazioni pratiche.

INIZIO LEZIONI

Il corso si svolge nel secondo semestre

ORARI

L'orario di tutti gli insegnamenti è consultabile su EasyAcademy.

Vedi anche:

METODI DI SIMULAZIONE APPLICATI ALLA FISICA

ESAMI

Modalità d'esame

L' esame orale che verterà sulla discussione di una tesina e su domande generali sul programma.

Modalità di accertamento

La tesina consiste nello sviluppo di un programma che,  applicando concetti e delle tecniche appresi nel corso,  risolva un problema fisico.

L' orale si dividerà tra presentazione della tesina e domande generali sul corso.