MATEMATICA 2

MATEMATICA 2

_
iten
Codice
56422
ANNO ACCADEMICO
2018/2019
CFU
6 cfu al 2° anno di 8694 SCIENZE DELL'ARCHITETTURA (L-17) GENOVA
SETTORE SCIENTIFICO DISCIPLINARE
MAT/05
LINGUA
Italiano
SEDE
GENOVA (SCIENZE DELL'ARCHITETTURA )
periodo
1° Semestre
propedeuticita
materiale didattico

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

Il corso si propone di costituire una guida al ragionamento matematico e di fornire una preparazione di base propedeutica agli altri insegnamenti che richiedono metodi e strumenti matematici.

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

Il corso si propone di costituire una guida al ragionamento matematico e di fornire una preparazione di base propedeutica agli altri insegnamenti che richiedono metodi e strumenti matematici.

Modalità didattiche

L'esame consiste di una prova scritta e di una prova orale: la prova scritta consiste di due esercizi la cui valutazione parziale è di 15/30 e complessiva di 30/30 da svolgersi in due ore; si può accedere alla prova orale se nella prova scritta si è ottenuta una valutazione minima di 15/30.
Ogni appello scritto vale fino all'appello successivo nel senso che è possibile sostenere l'orale subito oppure dopo l'appello scritto successivo, dopodiché non è più valido

 

PROGRAMMA/CONTENUTO


Funzioni di due variabili: curve di livello; derivate parziali e direzionali, gradiente, differenziabilità e piano tangente. Estremi relativi ed assoluti. Integrali doppi: definizione ed interpretazione geometrica, proprietà; domini normali e formule di riduzione; integrali doppi in coordinate polari; calcolo di volumi e di coordinate di baricentri di figure piane. Integrali curvilinei: curve piane e loro rappresentazione parametrica; lunghezza di una curva; integrali curvilinei di campi scalari e di campi vettoriali; forme differenziali esatte e loro potenziale. Equazioni differenziali: equazioni differenziali ordinarie e loro generalità; equazioni differenziali a variabili separabili; equazioni differenziali lineari omogenee e non omogenee a coefficienti costanti. Problema di Cauchy.

 

TESTI/BIBLIOGRAFIA

ANALISI MATEMATICA 2-Joel Hass-Maurice D.Weir-GeorgeB.Thomas,jr.-PEARSON

DOCENTI E COMMISSIONI

Ricevimento: Giovedì dalle 10:30 alle 13:00

Commissione d'esame

ANNA MARIA MANTERO (Presidente)

MARIA LUISA BENNATI (Presidente)

GRAZIANO PIERI

SAVERIO GIULINI

LEZIONI

Modalità didattiche

L'esame consiste di una prova scritta e di una prova orale: la prova scritta consiste di due esercizi la cui valutazione parziale è di 15/30 e complessiva di 30/30 da svolgersi in due ore; si può accedere alla prova orale se nella prova scritta si è ottenuta una valutazione minima di 15/30.
Ogni appello scritto vale fino all'appello successivo nel senso che è possibile sostenere l'orale subito oppure dopo l'appello scritto successivo, dopodiché non è più valido

 

ESAMI

Modalità d'esame

Nel corso dell'a.a. 2017/2018 verranno eseguite due prove scritte intermedie o compitini, ciascuna consistente di due esercizi articolati sul programma svolto in precedenza; tali prove permettono di ottenere una media, se non inferiore a 15/30, che ha validità per tutto l'a.a. 2017/2018; con la media valida dei compitini si è esonerati dallo svolgere lo scritto d'esame. Eventuali recuperi di parti mancanti o insufficienti di argomenti dei compitini verranno svolti durante gli appelli scritti di gennaio o febbraio 2018. La prova orale verrà concordata dopo ogni appello scritto.
Durante le prove intermedie e gli appelli scritti non è possibile consultare testi ed appunti;è possibile solo tenere un foglio formato A4, scritto di proprio pugno, per il programma della prof. Mantero ed uno per quello della prof. Bennati(oppure un unico foglio protocollo comprensivo dei due programmi).
L'esame è superato con una valutazione complessiva non inferiore a 18/30.

 

Calendario appelli

Data Ora Luogo Tipologia Note
12/09/2019 09:30 GENOVA Scritto + Orale
12/09/2019 09:30 GENOVA Scritto + Orale