The unit deals with the most relevant topics related to advanced reciprocating Internal Combustion Engines (ICE), alternative fuels for the transport sector, the development of electric powertrain units and the application of fuel cell to mobility systems

  • Obiettivi e contenuti
    • OBIETTIVI FORMATIVI
      The main objectives of the course are: to provide an adequate and critical knowledge on environmental friendly propulsion systems for different applications, taking into account energy-related and economic issues. To develop skills for the analysis and comparison of advanced systems and technologies for ultra-low emissions Internal Combustion Engines (ICE), the use of alternative fuels (biofuels, NG, hydrogen), the development of hybrid propulsion systems and the application of fuel cells to road vehicles propulsion. To provide criteria for the selection of different systems and technologies referring to several application fields, allowing a first assessment of real benefits in terms of energy consumption and environmental impact for the proposed technical solutions compared to conventional systems.
      PROGRAMMA/CONTENUTO

      Lectures

      Advanced systems and technologies for ultra-low emissions ICE – General overview on problems, legislation and possible actions. Advanced fuel injection systems. Advanced combustion processes. Innovative devices and systems for exhaust emissions control. Advanced turbocharging concepts. CO2 emission reduction in thermal engines. Downsizing concept and related technologies.

      Alternative fuels – Natural gas. Hydrogen and hydrogen-methane mixtures for thermal engine powertrains. Biofuels. CO2 emissions overall balance. Well-to-wheel analysis.

      Electric and hybrid propulsion – Electric powertrain: advantages/disadvantages, performance, operating range, costs, components, overall energy and emissive balance. Hybrid propulsion: hybrid system configurations, hybrid categories (start-&-stop, micro, mild, full hybrid systems), main features, characteristics and limits of operating configurations, applied examples, overall energy and emissive balance, further developments.

      Fuel cell application to propulsion systems – General overview on the electrochemical conversion process, fuel cell types and characteristics. Fuel cell application to powertrain systems: types, operating problems, performance, hydrogen generation and storage systems, energy and emissive balance; applications, technical and economic issues, further developments.

      TESTI/BIBLIOGRAFIA

      Notes on the different themes discussed in lectures will be provided by the teacher.

      P. J. Dingle and M. D. Lai, Diesel Common Rail and Advanced Fuel Injection Systems, Society of Automotive Engineers, 2005.

      R. van Basshuysen, Gasoline Engine with Direct Injection, Vieweg+Teubner, 2009.

      AA. VV., Advanced combustion for low emissions and high efficiency: a literature review of HCCI combustion concepts, CONCAWE Technical Report no.4/08, 2008.

      B. Kegl, M. Kegl, S. Pehan, Green Diesel Engines – Biodiesel Usage in Diesel Engines, Springer, 2013.

      B. Morey, Future Automotive Fuels and Energy – Technology Profile, Society of Automotive Engineers, 2013.

      G. Kalghatgi, Fuel/Engine Interactions, Society of Automotive Engineers, 2014.

      K. Owen, T. Coley, Automotive Fuels Reference Book, Society of Automotive Engineers, 3rd Edition, 2014.

      I. Husain, Electric and Hybrid Vehicles – Design Fundamentals, Taylor and Francis Group, 2011.

      AA. VV., Fuel Cell Handbook, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 7th Edition, 2004.

      P. Corbo, F. Migliardini, O. Veneri, Hydrogen Fuel Cells for Road Vehicles, Springer, 2011.

      R. Edwards, H. Hass, J.F. Larivé, L. Lonza, H. Maas, D. Rickeard, Well-to-Wheels analysis of future automotive fuels and powertrains in the European context – Well-to-Wheels Report, Version 4a, European Commission – Joint Research Centre, Institute for Energy and Transport, 2014.

      URL Orario lezioni
      ADVANCED PROPULSION SYSTEMS FOR LOW ENVIRONMENTAL IMPACT
      http://www.politecnica.unige.it/index.php/orario-e-calendario-delle-lezioni
  • Chi
    • Docenti
    • Giorgio Zamboni
      tel. (+39) 010 353-2457
      Giorgio.Zamboni@unige.it
    • Commissione d’esame
      86665 - ADVANCED PROPULSION SYSTEMS FOR LOW ENVIRONMENTAL IMPACT
      Massimo Capobianco
      Silvia Marelli
      Giorgio Zamboni (Presidente)
  • Come
    • MODALITA' DIDATTICHE

      48 hours of lectures

      MODALITA' D'ESAME

      Examination is based on an oral test, proposing at least two questions, selecting their subject among the four unit themes.

      MODALITA' DI ACCERTAMENTO

      Questions and discussions during the lectures. Students are solicited to compare technical options with a critical approach.

  • Dove e quando
    • URL Orario lezioni
      ADVANCED PROPULSION SYSTEMS FOR LOW ENVIRONMENTAL IMPACT
      http://www.politecnica.unige.it/index.php/orario-e-calendario-delle-lezioni
      INIZIO LEZIONI

      February 2018 (2nd semester), to be confirmed according to unit timetable

      RICEVIMENTO STUDENTI
      Giorgio Zamboni

      Il docente riceve su appuntamento previo invio di un messaggio all'indirizzo e-mail: giorgio.zamboni@unige.it

      Appelli
      Data Ora Tipo Luogo Note
      21 dicembre 2017 15:00 Orale Savona
      17 gennaio 2018 9:00 Orale Savona
      16 febbraio 2018 9:00 Orale Savona
      26 marzo 2018 9:00 Orale Savona
      30 maggio 2018 9:00 Orale Savona
      20 giugno 2018 9:00 Orale Savona
      17 luglio 2018 9:00 Orale Savona
      10 settembre 2018 9:00 Orale Savona
      29 ottobre 2018 9:00 Orale Savona
  • ALTRE INFORMAZIONI
    • Pre-requisites

      Basic thermodynamic knowledge (suggested)

      Basic knowledge on Internal Combustion Engines (suggested)

  • Contatti