ISTITUZIONI DI GEOMETRIA SUPERIORE 2 (8 CFU)

ISTITUZIONI DI GEOMETRIA SUPERIORE 2 (8 CFU)

_
iten
Codice
61707
ANNO ACCADEMICO
2017/2018
CFU
8 cfu al 1° anno di 9011 MATEMATICA (LM-40) GENOVA
SETTORE SCIENTIFICO DISCIPLINARE
MAT/03
LINGUA
Italiano (Inglese a richiesta)
SEDE
GENOVA (MATEMATICA)
periodo
2° Semestre
materiale didattico

PRESENTAZIONE

Le lezioni si tengono in lingua italiana. Si possono svolgere in lingua inglese su richiesta.

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

Obiettivo del corso è presentare una introduzione elementare ai concetti e metodi di Geometria Algebrica moderna.

Modalità didattiche

Tradizionale

PROGRAMMA/CONTENUTO

Varieta` con funzioni (spazi anellati speciali), varieta' affini e algebriche. Verranno dimostrati il Lemma di normalizzazione di Noether, il Nullstellensatz di Hilbert e l'esistenza di varieta' affini. Esempi spazi affini, spazio proiettivo e varieta' determinantali. Teoria della dimensione, componenti irriducibili e dimostrazione del teorema della base di Hilbert. Varieta' prodotto, separabili e complete. Dimostrazione del Lemma di Chow. Scoppiamenti Teoria dei fasci. In particolare verranno introdotti i fasci (quasi-)coerenti, i fasci localmente liberi e invertibili. Teoria dei divisori e gruppo di Picard. Differenziali di Kaehler e varieta' lisce. Curve. Fasci coerenti su curve. La formulazione del teorema di Riemann-Roch per le curve proiettive nonsingolari e il suo significato ed esempi.

TESTI/BIBLIOGRAFIA

1. George R. Kempf: Algebraic Varieties , Cambridge University Press, 1993.

2. D. Mumford: The Red Book of Varieties and Schemes , Springer, 1999.

3. J. Dieudonne': Cours de geometrie algebrique vol 1 et 2 , Presses Universitaires de France , 1974.

4. J. le Potier: Geometrie Algebrique , DEA de Mathematiques de l' Universite 2001-2002

5. M. Reid: Undergraduate Commutative Algebra , London Math. Soc. Student Texts 29, 1995.

6. I.R. Shafarevich: Basic Algebraic Geometry I, (Second Edition), Springer Verlag, 1994.

7. L. Badescu, E. Carletti, G. Monti Bragadin: Lezioni di Geometria Analitica , Universita` di Genova, 2004 (www.dima.unige.it/~badescu).

DOCENTI E COMMISSIONI

Ricevimento: Su appuntamento  

Commissione d'esame

ARVID PEREGO (Presidente)

MATTEO PENEGINI (Presidente)

MAURO CARLO BELTRAMETTI

LEZIONI

Modalità didattiche

Tradizionale

INIZIO LEZIONI

In accordo con il calendario accademico approvato dal Consiglio di Corsi di Studi.

ORARI

L'orario di tutti gli insegnamenti è consultabile su EasyAcademy.

Vedi anche:

ISTITUZIONI DI GEOMETRIA SUPERIORE 2 (8 CFU)

ESAMI

Modalità d'esame

Orale

Modalità di accertamento

Esame orale e coinvolgimento degli studenti durante il semestre attraverso alcuni seminari. Non sono previsti compitini durante il semestre

ALTRE INFORMAZIONI

Pagina Web dell’insegnamento: http://www.dima.unige.it/~penegini/

Prerequisiti: E' consigliabile aver seguito almeno un corso di: Algebra Lineare e Geometria Analitica, Algebra Generale, Algebra Commutativa, Teoria di Galois, Topologia Generale, Analisi1, Analisi2, Geometria differenziale, Corso su Curve e Superfici.

Modalità di frequenza: Facoltativa. Consigliata

Modalità di iscrizione agli esami: Su appuntamento