INORGANIC FUNCTIONAL AND STRUCTURAL MATERIALS

INORGANIC FUNCTIONAL AND STRUCTURAL MATERIALS

_
iten
Code
65193
ACADEMIC YEAR
2020/2021
CREDITS
6 credits during the 1st year of 9018 Chemical Sciences (LM-54) GENOVA

6 credits during the 2nd year of 9017 Materials Science and Engineering (LM-53) GENOVA

6 credits during the 1st year of 9017 Materials Science and Engineering (LM-53) GENOVA

SCIENTIFIC DISCIPLINARY SECTOR
CHIM/03
LANGUAGE
Italian
TEACHING LOCATION
GENOVA (Chemical Sciences)
semester
2° Semester
Teaching materials

AIMS AND CONTENT

LEARNING OUTCOMES

Introduction to processes for the preparation and modification of functional inorganic materials. Properties of the synthesized materials and their applications.

Teaching methods

Traditional lectures

SYLLABUS/CONTENT

Course objectives. Definition of functional materials and its relations to smart materials. Trasducers, sensors and actuators. Use of sensors in high technological devices (e.g. smartphones). MEMS. Synthesis methods for amorphous and crystalline materials. Solid-state reaction. Mechanochemical synthesis. Ceramic synthesis. Sintering Process. Combustion synthesis. Intercalation reactions. Formation of solids from solutions and melts: sol-gel processes and precursors. Hydrothermal synthesis. Intercalation reactions. Layered host lattice, different charged layers and stages. Grafting reactions. Pillaring reactions. Intercalation compounds: graphite layered, metallic dichalcogenides. Hydrotalcite like-compounds. Nanostructured materials. Single crystals growing in functional materials. p-n junction. Diode Examples of application of p-n junctions. Semiconductor materials list. Methods for single crystal production of semiconductors: Czochralski process, Float-zone growing, Bridgman technique. Wafer production of Si -p and –n doped. Thin-film deposition techniques. Classification of thin-film deposition technology. Physical vapor deposition and chemical vapor deposition. Examples of use in different fields. Evaporation step. Knudsen number. Step coverage. Deposition steps. Epitaxy. Fractional mismatch. Substrates for epitaxy. Heteroepitaxy of semiconductors. Epitaxy techniques (LPE, VPE, MBE, MOCVD). Energy beams: electron beams, cathodic and anodic arc, pulsed beams, ion-beams sputtering. Chemical vapor deposition (CVD) and comparison with PVD. Gas transport, reactors and typical overall reactions used in CVD. Precursors. Case exemplary study: Deposition of SiO2.

Examples of functional materials

LED (Light emitting diodes). From IR-LEDs to visible LEDS. Case exemplary study: more than 30 years in order to obtain efficient blue LED. Thermoelectric materials. Seebeck and Peltier effects. . Figure of merit zT. Thermoelectric modules. Phonon-glass electron crystal (PGEC). Applications.  Shape memory alloys (SMA). Martensitic transformation. Shape memory effect. Superelasticity. Applications. Piezoelectrics. Piezoelectricity and crystal symmetry. Lead zirconate titanate (PZT) and other perovskitic materials. Applications.  Rechargeable Lithium ion batterie and Supercapacitors. Energy storage: batteries vs supercapacitors. Roching Chair of Li-ion. Choice of electrodes.  Supercapacitors and materials of choice.

 

RECOMMENDED READING/BIBLIOGRAPHY

Inorganic materials, D.W.Bruce, D.O’Hare, J.Wiley&Sons, 1997

Synthesis of Inorganic Materials, U.Schubert, N.Hüsing, Wiley-VCH, 2012

Introduzione alla chimica dei materiali, G.Flor, C. Tealdi, Dispenseonline, Pavia, 2009

Basic Solid State Chemistry, A.R.West, Wiley-VCH, 1984

Solid State chemistry, Anthony R. West, J. Wiley e Sons 1990

TEACHERS AND EXAM BOARD

Ricevimento: every day by e-mail appointment (paola.riani@unige.it)

Ricevimento: No fixed office hours. Student and teachers fix a proper time for questions.

Exam Board

MAURO GIOVANNINI (President)

GABRIELE CACCIAMANI

PAOLA RIANI (President Substitute)

LESSONS

Teaching methods

Traditional lectures

LESSONS START

From 01 march 2021 (see http://www.chimica.unige.it/didattica/Home_SC  and/or  https://corsi.unige.it/9018  ) 

EXAMS

Exam description

Oral examinations lasting at least 40 minutes.

Assessment methods

The oral examination, lasting at least half an hour, allows to check accurately the achievement of the educational goals of the course.

Exam schedule

Date Time Location Type Notes
14/06/2021 09:30 GENOVA Laboratorio
25/06/2021 09:30 GENOVA Laboratorio
22/07/2021 09:30 GENOVA Laboratorio
31/08/2021 09:30 GENOVA Laboratorio
13/09/2021 09:30 GENOVA Laboratorio

FURTHER INFORMATION

http://www.chimica.unige.it/en/teaching/msc-degrees