# PHYSICS AND LABORATORY COURSE ON METHODS OF OBSERVATION AND MEASURE

OVERVIEW

The class provides an overview of the main concepts and laws of physics in the field of mechanics, thermodynamics and electrical phenomena. Laboratory experiences let the student to perform simple physical measurements by addressing the quality of the results as common in any scientific discipline

## AIMS AND CONTENT

LEARNING OUTCOMES

The lab part aims at supplying the student with the capability of performing measurements, analyzing data and drawing appropriate conclusions taking into account experimental errors.

AIMS AND LEARNING OUTCOMES

To learn the basic concepts and techniques of classical physics and which are at the basis of much of the phenomenon of scientific disciplines.

To gain the ability to solve quantitatively simple physical problems

To the ability to perform laboratory measurements by evaluating the quality and validity of the collected data

Teaching methods

Frontal lessons and laboratory experiences

SYLLABUS/CONTENT

Physical quantities - units of measurement - unit conversion - dimensional analysis - vectors - graphic representation - sum and difference between vectors - Cartesian, polar (2D) and spherical (3D) representation of vectors.

Sum and difference between vectors in Cartesian representation - vector form - mutiplication of vectors with scalar and other vectors

Material point kinematics - Material point position and displacement - Hourly motion time - Trajectory - Average and instantaneous speed - Scalar speed and trajectory length - Instant acceleration and its representation in the intrinsic reference system.

1D motion: uniform straight motion, motion at cosntant acceleration - the relation between space and speed in the straight motion at constant acceleration

2D motion: motion of the graves (trajectory, outline), uniform circular motion (angular velocity, period, frequency, 1D harmonic motion).

The 3 Principles of Material Point Dynamics: Inertial Reference Systems, Force and Newton's Law, Principle of Action and Reaction. Application to simple system

Universal gravitation law, weight strength and applications. Vincolar reactions: flat plane.

The laws of frightening friction - sloped plane with friction.

Mass + spring systems as an example of harmonic oscillator. Hooke's Elasticity and Law.

Work of a force - kinetic energy theorem - conservative and non-conservative forces - potential energy - mechanical (total) energy of the material point- conservation and non-conservation of mechanical energy - applications. Average and instantaneous power.

Electric charge - Conductors and insulators - Electrostatic forces - Electric field and electric potential - Electric current - Electric circuits - Power supplies and delivered power - Electric resistance - Ohmic conductors - The 3 Ohms laws - Joule effect and law.

DC Current Circuits - Series and Parallel Resistors - Realistic Real Power Generator Model (Internal Resistance) - Capacitors and Capacities.

Capacitors as Circuit Elements: Series and Parallel Capacitors - RC Circuits (Charging and Discharging temporal curve).

Thermodynamics: point of view and objectives, thermodynamic systems, equilibrium states and status variables. Temperature and thermometers - zero principle - gas thermometer - pressure (absolute and relative).

Perfect gas and its state equation. Heat as a form of energy - calorie and its mechanical equivalent - thermal capacity - specific heat - molar heat - Dulong & Petit law.

Phase change - latent melting and vaporizing heat. Bunsen Calorimeter as a Application.

The concept of thermodynamic system , environment and universe. Classification of thermodynamic transformation types. Work performed by a system.

The first principle of thermodynamics: internal energy as a potential thermodynamic. Properties of internal energy, the internal gas energy of the perfect gas. Molar heat of the perfect gas under pressure and constant volume - Mayer's report.

Heat transformations in mechanical work: the performance of a thermodynamic cycle. Yield of a thermodynamic cycle according to the 2nd principle (Carnot theorem).

Formulations of the second principle: Kelvin-Planck and Clausius. Entropy as a measurement of disorder and as a potential thermodynamic.

Definition and properties of entropy. Formulation of the second principle by entropy. The effects on the universe's entropy of the irreversible transformations of a system. Examples of calculation of entropy variations in simple systems.

Observation and measurement methods

Definition of uncertainty or experimental error. Best value of a measurement. Maximum errors and statistical errors. Standard deviation and standard error. Linear propagation of maximum errors. Gaussian distribution of measurements. Significance of Confidence Interval. Correlation between measurements and regression line.

Experience no. 1. Measurement of lengths and verification the law of conjugated points for a thin lens

Experience no. 2. Measurement of electrical potential difference, currents and resistances.

Experience no. 3. Temperature and thermal capacity measurements.

Data Processing: Use of a dedicated program for statistical analysis and adaption of mathematical functions to experimental data

RECOMMENDED READING/BIBLIOGRAPHY

M.Celasco - Lineamenti di Fisica Medica per Medicina e discipline a interesse biologico – ECIG (Genova)

J.R. Taylor – Introduzione all’analisi degli errori – Zanichelli ed.

## TEACHERS AND EXAM BOARD

**Ricevimento:** On request

Exam Board

ALESSANDRA PESCE (President)

ALBERTO GIOVANNI DIASPRO (President)

CLAUDIO CANALE

ELENA ANGELI

## LESSONS

Teaching methods

Frontal lessons and laboratory experiences

LESSONS START

March 1, 2018

ORARI

L'orario di tutti gli insegnamenti è consultabile su EasyAcademy.

Vedi anche:

PHYSICS AND LABORATORY COURSE ON METHODS OF OBSERVATION AND MEASURE

## EXAMS

Exam description

Written and oral.

Assessment methods

The exam consists of a written test followed by an oral. The written test consists in performing some exercises, the solution of which is evaluated not only in terms of the final answer, but also according to the logic and the steps in the solution itself. For the laboratory part the students must produce an individual report for each supported experience. The reports shall be discussed during the oral exam.