11 credits during the 1st year of 8756 Biotechnology (L-2) GENOVA
GENOVA (Biotechnology)
Prerequisites (for future units)
This unit is a prerequisite for:
  • Biotechnology 8756 (coorte 2017/2018)
This unit is composed by:
Teaching materials


This course provides a basic outline of the principles of modern biology and genetics in the context of evolution. It focuses on the main molecular and cellular mechanisms that are involved in life sciences emphasising  the mechanisms at the base of the main biological processes such as the molecular basis of heredity. The course also provides students with the skills to solve  problems related to their  knowledge of  biology and genetics.



Module “Biology” (6 CFU)

This module will provide the basic knowledge about biology that is required to understand biotechnology concepts and techniques for productive purposes. The aim of the course is to place the main biological processes within a setting that allows biotechnologists to take advantage of their potential and translate knowledge into biotech products.


Module “Genetics” (5 CFU)

This module will provide a basic outline of the principles of classical genetics and of their main underlying molecular and cellular mechanisms. The course will cover both the function and the organization of genetic material, mainly in eukaryotes. Methods to determine the relative positions of genes in the genome will be explained, and different patterns of inheritance will be described. The main areas covered will be: transmission genetics, gene and genome structure, and stability and variability mechanisms. The course will also introduce students to simple genetics problems with specific interactive lessons. 



Upon completion of the course, students should be able to recognize and describe genetic phenomena and demonstrate knowledge of:

-How to study life.

-Cellular and subcellular structures and functions

-Structure and function of genetic material

-gene expression and its regulation.



Upon completion of the course, students should be able to recognize and describe genetic phenomena and demonstrate knowledge of:

-General mechanisms of inheritance, with  particular attention to human heredity

-Fundamentals of molecular genetics mechanisms that underlie Mendelian inheritance patterns.

-Mutations: basic features of the process, molecular mechanisms and relative  consequences on the potential pathogenicity

-Applications of modern analytical techniques of molecular genetics and genomics to biotechnology and biomedicine


Module Biology:

Lectures and exercises


Module Genetis:

Lectures and exercises


Module Biology:

Modulo “Biologia” (6 CFU)

1: How to study life

2: Biotechnology

3: Scientific methods and literature

4: The origin of life

5: Cell theory 1

6: Seminar

7: Cell Membrane

8: Chromosomes

9: Cell cycle and cell division

10: From mendelian to modern genetics

11: Origin and development of Molecular Biology

12: From DNA to Proteins, from genotype to phenotype

13: Eukaryotic genome and its expression

14: Recombinant DNA and Biotechnology

15 Genome sequencing, molecular biology and the origin of molecular medicine

16: Developmental biology

17: The history of life on earth

18: Evolutionary mechanisms

19: The origin of species and the evolution of genomes

20: Procaryotes

21: Origin and diversification of Eukaryotes

22: Phylogenesis

23: The origin of animals and their body plan

24: Seminar



Module Genetic:

1) Genes and genomes

Organization of gene structure and function

comparative description of Genomes (size and organization)

Structure and function of chromatin

The nucleosome as a fundamental unit of DNA packaging, and its role in gene expression regulation


2)Meiosis: Inheritance and variation 

-Comparative analysis of meiosis and mitosis kinetics

-Mechanisms contributing to genetic variation: (recombination,independent assortment, random fertilization)


3)Basic Principles of inheritance:

Mendel's study of heredity. Applications of Mendel's principles to General genetics (eukaryotes)

Testing Hypotheses  about Patterns of Inheritance (Punnett  Square, branch diagram, probability methods )

4) Extensions to Mendel’s Laws for single gene inheritance


-Allelic variation and gene function:

-Incomplete dominance. Codominance,

-Multiple alleles, lethal alleles 

-Notions on allelic variation effects on viability: phenotypic, sterility-causing, lethal

-Pleiotropy : A single gene responsible for a variety of traits.


5) Extensions. to Mendel’s Laws for two or more  genes  determining one trait-

-Different models from 2-gene interaction :

novel phenotypes, complementary gene action, epistasis

-Gene-environment interaction,  environmental effects on phenotype

-Penetrance and expressivity


6) Problem solving in the following subjects :

-Applications of Mendel's Principles to eukaryotics .

-Extensions of Mendelism: incomplete dominance. Codominance, Multiple alleles, lethal alleles ,

-Different models of Gene-gene interaction

-Description of some examples of pleiotropic traits


7) Applications of Mendel's principles to Human genetics 

-Testing inheritance-hypothesis through  Mendelian pedigree pattern analysis


8)Problem solving in the following subjects

-Applications of Mendel's principles to Human genetics

-Pedigrees analysis.

-Transmission probability of monogenic traits


-9)Sex-linked traits:

 Sex-chromosomes and the chromosomal theory of inheritance.

-X-linked recessive and dominant inheritance and Y-linked inheritance.

-Molecular mechanisms of sex determination in humans,drosophila and other eukaryotes.


10) Dosage Compensation of X-Linked Genes:

-Molecular mechanisms of X-chromosome dosage compensation in mammals, Drosophila and other eukaryotes 


11)Linked Genes: Recombination and gene mapping in eukaryotes.

-Linked and unlinked genes, crossing-over and recombination.

-Frequency of recombination and genetic distance in genetic mapping.

-Correlations among genetic, cytogenetic and physical mapping.

-Notions of mechanisms of genetic exchange and mapping in humans and bacteria.


12) Problem solving in the following subjects :

-Sex-linked traits in drosophila and humans –

-Linked Genes: recombination and gene mapping in eukaryotes and notions of linkage analysis in human genetics Simple examples of pedigrees


13) Polygenic inheritance and 

environmental effects

A Mendelian explanation of continuous variation in polygenic trait inheritance

-Additive model of polygenic inheritance (continuous characters)

-Polygenic threshold model for non mendelian discontinuous characters.

-Simple examples of both models


14) -Mutation: Source of the Genetic Variability Required for Evolution

-Basic Features of the Process.

-Somatic and germline mutations.

-Spontaneous and induced mutations

-Physical,chemical agents as mutagens .

-Screening of chemicals for mutagenicity:The Ames test.

-Notions of DNA Repair mechanisms


15)Mutation: molecular basis and phenotypic effects

-Mutations with dangerous phenotypic effects

-Dominant and recessive lethal mutations

-Conditional mutations as  powerful tools for studying gene function

-Intra and intergenic suppressor mutations

-More in-depth studies on mutational mechanisms which result in the exchange of repeated sequences, unstable expansion of triplet repeats,transposable genetic elements


16) Transposable Genetic Elements(TGE)

-Transposable elements in bacteria

-Cut-and-paste transposons in Eukaryotes

Retroviruses and Retrotransposons

-Transposable Elements in Humans

-The Genetic and Evolutionary Significance of Transposable Elements



Mitochondrial Inheritance

-Molecular genetics mechanisms that contribute to uniparental (maternal)inheritance

-Mitochondrial DNA mutations and human health

Chromatin Structure and Epigenetic effects

-Genomic imprinting , DNA methylation ,chromatin remodeling

-Inheritance pattern of imprinted genes


18)The genetic basis of cancer

Cancer: a genetic disease

Role of Oncogenes, Tumor Suppressor Genes on failure of control over cell division and on cancer onset

Genetic Pathways to Cancer

Inherited cancer syndromes : defects in DNA replication, repair and recombination mechanisms.


19)Molecular Analysis of Genetic Information

-Use of Recombinant DNA Technology to Identify Human Genes and Diagnose Human Diseases

-Molecular Diagnosis of Human Diseases

-DNA Profiling

-Problem solving in applications of molecular genetics to biomedicine

20)Seminar lesson in cooperation with the students

More in-depth explanations on course-related topics requested by the students


Module “Biology”: “Principi di Biologia” Sadawa, Heller, Orians, Purves, Hillis. (Ed. Zanichelli).

Module “Genetics”: Snustad Simmons Principi di genetica  Ed.EdiseS; Russel P. Genetica Un approccio Molecolare Ed. Pearson


Office hours: Scheduling an appointment (, Tel: 010-5558213)

Office hours: Office hours for students are normally set on Thursdays from 09:00 to 11:00. The office address is: Biology Section, Dept. Experimental Medicine, entrance: Via Pastore 3 or Europa 30, second floor. E-mail appointments are strongly encouraged. The teacher's e mail address is the following: Alternatively the teacher can be reached at the following phone number: 01035338201.

Exam Board



ALDO PAGANO (President)




Module Biology:

Lectures and exercises


Module Genetis:

Lectures and exercises


October 1, 2017

Class schedule




Module “Biology”: Oral examination.
Module “Genetics” : Written test solving 3 or 4 genetic problems and 4 open questions,  all to be answered in 75  minutes) for the Genetics section. The examination for the main course  consists of a single written exam for the 2 sub-sections.  The total amount of time allowed for the examination is 135  minutes.

The chance to carry out a supplementary oral examination  is available both to students whose final average mark is 17/30 and  to those who wish to increase the mark (at least 27/30) they obtained in the written examination. 


Module “Biology”:

Oral examination. It is always led by the owner and by another teacher role with many years of experience (only in exceptional cases, the second component can be a fellow with at least 5 years of postgraduate research experience) and has a duration of at least 30 minutes (typically 45 minutes). With these modes, given the long experience of examinations in the discipline, the commission is able to verify with high accuracy to achieve the educational objectives of teaching. When these are not met, the student is invited to deepen the study and to use further explanation by the lecturer.

Module “Genetics”: 

Students are assessed ­by a final exam alone which aims to ensure that they have actually reached the required level of knowledge. In order to pass the examination and to reach a mark of at least 18/30,  the students must prove their knowledge on : -general mechanisms of inheritance, with  particular attention to human heredity - fundamentals of molecular genetics mechanisms that underlie inheritance models . - basic features of the process and the Molecular Basis of the Mutation


Exam schedule

Date Time Location Type Notes
23/01/2018 09:30 GENOVA Orale c/o Aula A3 CBA
14/02/2018 09:30 GENOVA Orale c/o Aula A3 CBA
18/06/2018 09:30 GENOVA Orale c/o Aula A3 CBA
28/06/2018 09:30 GENOVA Orale c/o Aula A3 CBA
18/07/2018 09:30 GENOVA Orale c/o Aula A3 CBA
18/09/2018 09:30 GENOVA Orale c/o Aula A3 CBA
23/01/2018 09:30 GENOVA Orale c/o Aula A3 CBA
14/02/2018 09:30 GENOVA Orale c/o Aula A3 CBA
18/06/2018 09:30 GENOVA Orale c/o Aula A3 CBA
28/06/2018 09:30 GENOVA Orale c/o Aula A3 CBA
18/07/2018 09:30 GENOVA Orale c/o Aula A3 CBA
18/09/2018 09:30 GENOVA Orale c/o Aula A3 CBA