# DYNAMIC AND CONTROL OF MACHINES AND ENERGY SYSTEMS

iten
Code
60318
2017/2018
CREDITS
6 credits during the 2nd year of 9270 Mechanical Engineering - Energy and Aeronautics (LM-33) GENOVA
SCIENTIFIC DISCIPLINARY SECTOR
ING-IND/09
LANGUAGE
Italian
TEACHING LOCATION
GENOVA (Mechanical Engineering - Energy and Aeronautics)
semester
2° Semester
Teaching materials

## AIMS AND CONTENT

LEARNING OUTCOMES

The course provides the student with the skills necessary for modelling, simulating and controlling turbomachinery and energy systems, both fossil fuel based as well as renewable source based. Dynamic modelling is performed using Matlab-Simulink software, with capability of developing real-time software.

TEACHING METHODS

Lectures,practice and laboratory

SYLLABUS/CONTENT

Introduction to the study of automatic controllers (Lesson A)

(notes are provided but they are not explained during the lessons)

Fundamentals on mathematical study of dynamic systems (Lesson B)

(notes are provided but they are not explained during the lessons)

Fundamental of dynamic linear systems (Lesson C)

Continuous and discrete state models. Linearization. Fundamentals of: Laplace transformation, transfer functions, poles and zeros, frequency response, Bode diagram, signal filters.

Exercises: C1) Linearization of electrical scheme of Fig. 3.1, with external disturbances. C2) Example of dynamic state model (example). C3) Linearization of water tank model. C4) Linearization of gas tank model (plenum). C5) State dynamic model of furnace.

Digital systems (Lesson D)

Data sampling. Z transformation. Numerical integration. Fundamentals of state-machine using StateFlow.

Exercises: D1) Discrete integrator and derivative, D2) Stateflow-based controller for a furnace.

Classical PID controller  (Lesson E)

PID structure. Tuning with Ziegler-Nichols oscillation method. Tuning with reaction curve. Tuning with poles assignment..

Exercises: F1) Empirical tuning of PID. F2) Tuning of PID for a furnace.

Dynamic models of energy systems (Lesson F)

Base equations. The “dynamic” and “lumped-volume” models. The “plenum” component. Time characterization.

Exercises: F1) Plenum model. F2) Automatic compiling of models.

Main components and dynamic models (Lesson G)

Streams and components Active/Inactive. Mixer-splitter. Matcher. Control valves. Rotating shaft. Piping. Heat exchanger. Dynamic compressor. Dynamic expander (gas and steam). Gas turbine combustor. Electrical generator. District heating burner and network.

Exercises: G1) Shaft model. G2) Pipe model. G3) District heating piping network.

Gas turbine control (Lesson H)

Gas turbine control. Micorturbine control. Externally fired microturbine control. Turbojet and turbofan control. Simplified mathematical representation of a gas turbine. Fundamentals of I.C.E. control.

Exercises: H1) Simplified model of GT. H2) Off-design of mGT. H3) Dynamics and control of mGT with and without a volume. H4) Instabilities of a pump/tank water system..

Compression systems (Lesson I)

Compression systems based on dynamic compressors; dynamic interaction between the compressor and the system; static and dynamic instabilities; surge and rotating stall; Greitzer model and the impact of geometrical dimensions on system unstable trajectories; techniques to limit the incipient surge in gas turbines and compression systems. Fundamentals of passive and active surge controls.

Control of power plants (Lesson L)

Control of steam power plants. Steam turbine control. Combined cycle control.

G.C. Goodwin, S. F. Graebe, M. E. Salgado, “Control System Design”, Prentice Hall, 2001, available at http://csd.newcastle.edu.au/index.html

G. Bacchelli, F. Danielli, S. Sandolini, “Dinamica e Controllo delle Macchine a Fluido”, Facoltà di Ingegneria, Università di Bologna, Officine Grafiche Pitagora-Tecnoprint.

Information on reference material and literature are provided directly by the Professor.

Course notes are also available on aula-web.

## TEACHERS AND EXAM BOARD

Exam Board

ALBERTO TRAVERSO (President)

MARIO LUIGI FERRARI

LOREDANA MAGISTRI

ARISTIDE MASSARDO

## LESSONS

TEACHING METHODS

Lectures,practice and laboratory

## EXAMS

EXAM DESCRIPTION

The exam is partially oral and partially devoted to the discussion of one project proposed by the student (and previously approved by the Professor): such a project must deal with the course topics. A few examples are reported hereby:

Example 1: dynamic model in Matlab-Simulink of an axial compressor for natural gas compression, coupled with the downstream pipeline and controlled by a PID controller

Example 2: dynamic model in Matlab-Simulink of a piping network for steam delivery around an industrial site, with regulation valves, and controlled with a State-flow controller.

Example 3: dynamic modelling in Matlab-Simulink of an Auxiliary Power Unit (simple cycle microturbine) for a passenger aeroplane, equipped with a constant speed controller.

ASSESSMENT METHODS

Written exercises and final project

Exam schedule

Date Time Location Type Notes
16/02/2018 09:30 GENOVA Esame su appuntamento
14/09/2018 09:30 GENOVA Esame su appuntamento