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ABSTRACT 
 
The HIGAS project aims at developing an innovative platform for detection of impurities in hydrogen 
employing quartz-enhanced photoacoustic spectroscopy as sensing technique. The development of hydrogen-
related technologies for clean energy production and storage has encountered the obstacles related to the 
presence of trace contaminants in the hydrogen matrices, strongly affecting the performances of fuel cell 
systems. Nowadays, the detection and analysis of these impurities is mainly performed employing gas 
chromatography techniques coupled with different types of detectors. This instrumentation is expensive, 
characterised by a large footprint and not capable of real-time monitoring. A promising alternative is 
represented by optical absorption spectroscopy. Among the different techniques, quartz-enhanced 
photoacoustic spectroscopy (QEPAS) has demonstrated the capability to perform trace gas detection for 
environmental monitoring with excellent sensitivity and selectivity, also providing high sensor compactness 
and ruggedness. The QEPAS sensors exploit a quartz tuning fork as resonant piezoelectric transducer to 
convert the photoacoustic waves generated by the interaction among a laser source and the target molecule 
into an electric signal proportional to the target concentration. The tuning fork is typically coupled to 
millimetric resonator tubes in the so-called QEPAS spectrophone. In this project, two of the most relevant 
impurities in hydrogen samples will be investigated, namely carbon monoxide and ammonia. First, the spectral 
features of the two analytes to be targeted will be individuated and the response of the QEPAS spectrophone 
in the hydrogen matrix will be characterised. Then, two QEPAS sensors will be assembled, one for each 
analyte, identifying the best components with the aim of developing a shoe-size QEPAS box capable of 
standalone operation. Finally, the sensors will be tested and the performances in terms of detection limits will 
be assessed.   
 
 
 
 
 



 
 

 

RESEARCH PROPOSAL 
Sections (a) and (b) should not exceed 4 pages. References do not count towards the page limits.  
 

Section a. State-of-the-art and objectives 

The challenge of reducing the effects of global climate change must involve the path towards the reduction of 
carbon emission. In this perspective, a strong cut in the use of carbon-emitting energy sources (coal, oil, etc.) 
would lead to a global benefit. An important alternative to coal and fossil fuels is represented by hydrogen-
related technologies, where hydrogen is used as an energy vector to power fuel cell systems and produce 
electrical energy starting from electrochemical oxidation of hydrogen. Different approaches have been 
investigated, such as polymer electrolyte fuel cells (PEFCs) and proton exchange membrane fuel cells 
(PEMFCs) [1-2]. Nevertheless, this technology is not competitive with traditional internal combustion engines 
due to the strict requirement of pure or purified hydrogen, whose preparation and storage costs are still high. 
The impurities are generated in the hydrogen production process, such as natural gas steam reforming in which 
the steam reacts with the natural gas in a set of reactions to produce mainly hydrogen, carbon dioxide, and 
carbon monoxide [3]. The need for high-purity hydrogen comes from the impact of impurities in the hydrogen 
matrix on the lifetime of the fuel cell systems, as even trace concentrations of contaminants may lead to 
relevant degradation of the fuel cell catalyst [4]. The list of damaging impurities in hydrogen includes: carbon 
monoxide, ammonia, carbon dioxide, sulphur compounds, and hydrocarbons. The analytes concentration in 
the hydrogen matrix is strongly dependent on the hydrogen production method; however these contaminants 
could significantly affect the fuel cell systems operations at concentration level in the range of part-per-million 
(ppm) and below. Therefore, it is crucial to adopt sensitive and accurate detection methods for online and 
offline detection of contaminants in hydrogen, to fulfil the requirements of international standards (ISO 
14687:2019) [5].  

Carbon monoxide (CO) represents a threat for hydrogen fuel cells due to its capability of binding to platinum 
(Pt) anodes, which are widely employed in fuel cells for hydrogen oxidation reactions and oxygen reduction 
reactions in acidic environments. For instance, a voltage loss of 85% was observed in a PEMFC cell following 
an exposure of 70 ppm for 6 hours [6], and the need for a constant concentration of CO below 10 ppm has 
been reported [7]. ISO 14687:2019 requires a CO threshold concentration of 0.2 ppm for grade D applications 
(fuel cells for road vehicles). Ammonia (NH3) is a danger for fuel cell systems due to its reactive nature 
affecting the ion exchange capacity of the fuel cell leading to irreversible damage for high concentration or 
prolonged exposure [8]. ISO 14687:2019 requires a NH3 threshold concentration of 0.1 ppm for grade D 
applications. 

With the aim of monitoring the concentrations of hydrogen impurities different detection methods have been 
developed, for both offline and online monitoring. In the first case, the hydrogen mixtures are sampled and 
then delivered to a laboratory facility to be analysed. The detection and quantification of contaminants is 
performed employing instrumentation characterised by high sensitivity and selectivity, which in turn is usually 
expensive, requiring large footprint and qualified users. In this field, the golden standard is represented by gas 
chromatography coupled with different kinds of detectors as mass spectrometers, flame ionisation, and pulsed 
discharge helium ionisation detectors (PDHID) [9].  

Conversely, online monitoring techniques allow the detection and quantification of hydrogen impurities on 
field and in real time. These methods represent a crucial tool to monitor contaminants’ concentrations 
continuously, thus providing a prompt response in case of unexpected increase in impurities levels preventing 
malfunctioning of the apparatus. In this field, optical-based techniques may represent reliable solutions, being 
capable of sensitive detection for online monitoring. Sensors based on Fourier Transform InfraRed (FTIR) 
spectroscopy [10], cavity-enhanced Raman spectroscopy [11], and photoacoustic spectroscopy [12] for 
hydrogen contaminants detection have been demonstrated. However, the rising interest for hydrogen-related 



 
 

 

technologies has nowadays pushed new efforts in the development of sensitive, compact, rugged and reliable 
optical sensors for contaminants detection in hydrogen matrix. 

In this project, we aim to develop a new sensing platform for two of the most relevant impurities in hydrogen 
matrices, i.e., CO and NH3, based on quartz-enhanced photoacoustic spectroscopy (QEPAS). The latter 
represents a development of traditional photoacoustic spectroscopy, which has demonstrated higher sensitivity 
in a more compact sensing system [13]. Two different QEPAS sensors will be developed, each one housed 
inside a portable, shoe-size box equipped with the electronic boards and the gas line management system 
required to allow standalone operations. The goal of the project is to transfer the technologies developed for 
environmental monitoring in atmosphere (nitrogen matrix) to the detection of impurities in hydrogen, thus 
providing custom solutions ad hoc for this gaseous matrix. The QEPAS sensor will be validated in a laboratory 
environment, demonstrating their capabilities to match the requirements needed by the industry for fuel cell 
systems safety. 

 

Section b. Methodology 

Photonics sensors based on laser absorption spectroscopy (LAS) are of growing interest due to the recent 
development of powerful lasers tunable over large-wavelength ranges which permits unambiguous detection 
of numerous substances at low concentrations and in many cases even calibration free operation. They are 
considerably faster than non-photonic sensors (e.g. wet-chemical or chromatographic apparatus) and suffer 
from minimal drift. Photonics offers high specificity and sensitivity for real time in-situ measurement and 
allows the contactless simultaneous detection of many substances [14]. Photoacoustic spectroscopy follows 
different rules to absorption spectroscopy based on Lambert-Beer optical absorption, providing greater 
compactness and lower costs. The absorption of infrared photons in a gas sample results in the excitation of 
molecular energy levels whose energy is released as heat. The generated signal is proportional to the incident 
light intensity and, should this intensity be modulated, localised transient heating results. The medium responds 
creating acoustic (pressure) waves [15].  

PAS sensors use a microphone to detect the pressure wave in a resonant acoustic gas cell. QEPAS replaces the 
microphone with a spectrophone, composed by a quartz-tuning fork (QTF) and a pair of millimetre-size 
resonator tubes, aligned on both sides of the QTF in a way that the laser beam can be focused between the QTF 
prongs while passing through both tubes [13]. A schematic of the QEPAS spectrophone is shown in Fig. 1a. 
When the laser beam is modulated at the resonance frequency of the QTF or a subharmonic, a standing wave 
vibrational pattern is created within the resonator tubes which deflects the two prongs in opposite directions, 
exciting the QTF in a piezoelectrically-active, anti-symmetrical flexural mode. Thus, an electrical signal 
proportional to the absorbing analyte concentration is generated. Thus, the technique is baseline free, greatly 
easing calibration with respect to absorption spectroscopy. The main strengths of QEPAS are: immunity to 
environmental acoustic noise (an issue for standard PAS systems), no requirement for optical detectors, 
compactness, capability to analyse small gas samples, wavelength-insensitivity, hyperspectrality, high 
accuracy and sensitivity, very large linear dynamic range (from few % to part per trillion range), long-time 
stability, low-cost and able to operate in real time and in situ [16]. 

From 2002, several QEPAS sensors in laboratory prototype system have been developed and more than 30 
different analytes have been detected using a wide range of laser sources, from UV-visible (LEDs) to near- IR 
(diode) and mid-IR range (ICLs and QCLs), up to Terahertz range (QCLs). In most cases, ultimate detection 
limits in the part-per-billion range and down to part-per-trillion have been achieved, as shown in Fig. 1b [17]. 



 
 

 

 
Figure 1. (a) Schematic of the QEPAS spectrophone consisting of a QTF (yellow) and a pair of millimetric 
resonator tubes (grey). The laser beam (transparent red) is focused through the tubes between the QTF prongs. 
(b) QEPAS detection limits for a selected list of gas species [17]. 

Prior to 2013, all the QEPAS sensors reported in the literature employed commercial standard quartz tuning 
forks (QTFs) (i.e. those used in watches) operating at the fundamental flexural resonance mode with a 
frequency of ~ 32.7 kHz, which size and geometry has been optimised for timing and not for sensing. Indeed, 
the prongs spacing (300 μm) and the micro-resonator tubes (internal diameter of 600 μm) are very narrow, 
making difficult the optical coupling with the laser source. Additionally, the operating frequency of 32.7 kHz 
is too high with respect to the energy relaxation processes occurring in the absorbing gas, resulting in low 
radiation-to-sound conversion efficiency. The development of custom QTF led to a key breakthrough 
represented by custom tuning forks with (i) reduced resonance frequency while keeping the quality factor high 
and (ii) enlarged prong spacing. Compared to the original design, the new tuning forks result in better sensing 
performance [18].  

Hydrogen represents an excellent gaseous matrix for absorption spectroscopy, being mainly transparent in the 
IR region with the exception of some weak absorption lines around 2.12 μm [19]. Therefore, the optical 
detection can be performed by choosing suitable laser sources capable of matching spectral lines of target gases 
presenting no spectral interference with the absorption spectrum of other contaminants. In this way, the 
maximum spectroscopic signal will be found by means of a simple scan of the laser wavelength, thus avoiding 
the use for expensive reference cells but ensuring high selectivity to the measurements.  

Moreover, from the perspective of photoacoustic waves generation, hydrogen would provide several benefits 
with respect to nitrogen or standard air. The change in the gas matrix leads to a change in the energy dissipation 
mechanism occurring in a vibrating prong, which is the damping by the surrounding fluid [20]. As a result, the 
matrix composition and its thermodynamic parameters affect the QTF quality factor. Since the QEPAS signal 
is proportional to the QTF quality factor, the ultimate sensor sensitivity will be in turn affected by the selected 
matrix [21]. For gas matrices composed by molecules with low molecular weight, such as hydrogen, an 
increase in the QTFs’ quality factor is expected, thus resulting in an overall improvement of the detection 
performances. Nevertheless, to fully exploit the benefit arising from the hydrogen matrix, it is mandatory to 
use custom QEPAS spectrophone, with QTF geometry and resonator tubes size tailored to enhance the sensing 
performances.  
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Section c. Available instrumentations and resources 

The Physics Department of University of Bari contains the main equipment and tools to realise, test and 
validate Quartz-Enhanced Photoacoustic Sensing Systems for trace gas detection. This includes:  

- a machine shop for the realisation of mechanical parts of vast complexity in three dimensions 
- a 3D-printer for produce custom components with remarkable flexibility 
- state-of-the-art facilities for design and realisation of acoustic detection modules 
- testing workbenches for the characterization of optoacoustic transducers 
- a clean room (80 m2) equipped with mask aligner, e-beam evaporator, rapid thermal annealer and 

microscopes for realising electrical contacts on quartz crystals.  
- several quantum cascade lasers and interband laser sources operating in the mid-infrared as well as 

several diode laser sources 
- an optical spectrum analyzer for the characterization of laser sources  
- an FT-IR spectrometer for gas molecules characterization 
- several sets of THORLABS optics for the near- and mid-infrared spectral range  
- gas management system, including over 20 gas flow lines for toxic/corrosive analytes, with flow and 

pressure controllers, vacuum systems, gas cabinets and cylinders with certified gas mixtures. 

 

Section d. GANTT diagram 

For scientific and technological effectiveness, the proposed project activities will be developed into 4 separate 
work packages (WPs), with clearly identified schedules (Gantt chart in Fig. 2) 



 
 

 

 
Figure 2. Gantt chart of the project. 

 

Timing of the project is indicated in one-month packages in a Gantt Chart, broken down by work packages 
and tasks, including milestones and deliverables. 

 

WP1 – Project Coordination and Communication  

Task 1.1: Management, progress monitoring, reporting and dissemination (M1-M12) 

The scientific activities will include: tracking progress towards scientific deliverables and milestones; making 
decisions on scientific activities in order to implement the overall strategy; drafting technical reports; creating 
a broad dissemination of communications. 

 

WP2 – Literature investigation and strategy identification  

Task 2.1: Identification of spectral fingerprints for NH3 and CO (M1) 

This task will be devoted to the reconstruction of the infrared spectrum absorption of two selected analytes, 
namely CO and NH3, based on publicly available databases, including HITRAN, PNNL, Biorad, NIST, and 
SDBS. This literature research will be used as a guideline for the selection of the well-resolved features that 
can be used as fingerprints of related molecules, simplifying the identification process especially with 
interferers. 

Task 2.2: Assembly of two ADMs and characterization in pure H2 (M2-M3) 

Spectrophones composed by a custom quartz tuning fork (QTF) and a pair of resonator tubes will be assembled 
in aluminium Acoustic Detection Module (ADMs). The resonance properties of the spectrophone (the 
resonance frequency and its quality factor) as well as the noise level will be measured in pure hydrogen and 
compared with the performance in air. 

 

WP3 – QEPAS sensor prototype for NH3 detection in H2  

Task 3.1: Assembly of QEPAS sensor prototype (M4-M8) 



 
 

 

In this task, the QEPAS sensor system for NH3 detection in H2 will be assembled starting from components, 
including the mechanical, optical and electrical parts. The laser source will be optically coupled with the ADM 
by means of a focusing lens. The prototype will include electronic control boards for controlling the laser 
source and a transimpedance amplifier for processing the QTF signal. The table-top QEPAS system will have 
full functionality, including gas management system, control and communications with a laptop.  

Task 3.2: Definition of operating conditions (M9-M10) 

The operating conditions will be assessed. The best operating pressure maximising the signal-to-noise ratio 
will be found. The wavelength modulation and second harmonic detection technique, together with an 
advanced data analysis and fitting models, will be implemented in order to retrieve the concentration 
measurement of the NH3 in the H2 matrix. 

Task 3.3: Assessment of performance with certified concentrations (M11-M12) 

The QEPAS sensor prototype will be tested in a laboratory environment using certified reference gas cylinders 
of NH3/H2 mixture and a gas mixing device. The test will be performed in a controlled environment, with 
specific parameters regulated, including temperature, humidity, pressure and gas flow.  The performance of 
the sensor in terms of sensitivity, ultimate detection limit and long-term stability will be assessed. 

 

WP4 – QEPAS sensor prototype for CO detection in H2  

Task 4.1: Assembly of QEPAS sensor prototype (M4-M8) 

In this task, the QEPAS sensor system for CO detection in H2 will be assembled starting from components, 
including the mechanical, optical and electrical parts. The laser source will be optically coupled with the ADM 
by means of a focusing lens. The prototype will include electronic control boards for controlling the laser 
source and a transimpedance amplifier for processing the QTF signal. The table-top QEPAS system will have 
full functionality, including gas management system, control and communications with a laptop.  

Task 4.2: Definition of operating conditions (M9-M10) 

The operating conditions will be assessed. The best operating pressure maximising the signal-to-noise ratio 
will be found. The wavelength modulation and second harmonic detection technique, together with an 
advanced data analysis and fitting models, will be implemented in order to retrieve the concentration 
measurement of the CO in the H2 matrix. 

Task 4.3: Assessment of performance with certified concentrations (M11-M12) 

The QEPAS sensor prototype will be tested in a laboratory environment using certified reference gas cylinders 
of CO/H2 mixture and a gas mixing device. The test will be performed in a controlled environment, with 
specific parameters regulated, including temperature, humidity, pressure and gas flow.  The performance of 
the sensor in terms of sensitivity, ultimate detection limit and long-term stability will be assessed. 

 

Section e. Milestones, Deliverables and KPI 

The list of Milestones is reported in Table 1. 

 

 

 

 



 
 

 

Table 1. List of Milestones 

MS Milestone Title WP Due Means of Verification 

MS1 Definition of strategy 1 M1 Report on dissemination 
plan and schedule of 
scientific activities 

MS2 Mid-Term Project Status 1 M6 Report on mid-term 
progresses related to  

scientific activities and 
assessment of strategies 

for next activities 

MS3 Assembly of two 
QEPAS sensors 

3-4 M8 Report on the design and 
realisation of a QEPAS 

sensor prototype for NH3 
detection in H2 and a 

QEPAS sensor prototype 
for CO detection in H2  

MS4 Communication and 
dissemination reached 

1 M12 Report on dissemination 
to the scientific 

community (open-access 
publications, scientific 

seminars and 
conferences) and to a 
wider public (social 

media, local and national 
press release) 

 

The list of Deliverables is reported in Table 2. 

Table 2. List of Deliverables 

D Deliverable Title WP Due Type 

D1 Report on laser 
characteristics and on 

performance of 
spectrophone in H2 

environment  

2 M3 Report 



 
 

 

D2 A QEPAS sensor 
prototype for NH3 

detection in N2 and a 
QEPAS sensor 

prototype for CO 
detection in N2 

3-4 M12 Two Demonstrators with 
datasheet/specification 
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